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Context
▪ Health technology assessment (HTA) 

“…a multidisciplinary process that uses explicit methods to determine the value of a health 
technology at different points in its lifecycle. The purpose is to inform decision-making in order to 
promote an equitable, efficient, and high-quality health system.” 

Health Technology Assessment International http://www.htai.org/index.php?id=428

▪ In the UK
– Manufacturer submissions to NICE for reimbursement decisions on new technologies
– NICE writes guidelines for managing different conditions
– Academic or other agency led projects…

▪ Usually involve a systematic review to collect and synthesise the relevant evidence
– Typically a meta-analysis will be done

▪ Results of the evidence synthesis used in a decision model
– Consider costs and benefits of alternative interventions

▪ New methods or extensions to current methods appear all the time
– NICE Decision support Unit: critical review of existing and emerging methods for evidence 

synthesis on clinical effectiveness for decision-making in HTA, April 2020 
https://www.sheffield.ac.uk/nice-dsu/methods-development/chte2020-sources-and-synthesis-evidence

NICE: National Institute for Health and Care Excellence
2

http://www.htai.org/index.php?id=428
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Data Synthesis: Meta-Analysis or Network Meta-Analysis

Data Extracted from Included Studies

Eligibility Assessed for Studies Screened

Studies Screened

Studies Identified

Evidence selection

Typically RCTs

Check population and 
intervention characteristics;
Risk of bias etc

3
RCT: randomised controlled trial

Evidence synthesis in HTA
▪ Most HTAs will involve a meta-analysis of studies comparing the interventions 
of interest for the decision problem

– Typically randomised controlled trials considered

– Relative effects pooled across studies

▪ Often multiple treatments are of interest 

▪ Network meta-analysis (NMA) is an extension of standard meta-analysis to 
incorporate direct and indirect evidence on multiple treatment comparisons in a 
coherent way

– Increases precision and robustness of results as multiple sources of 
evidence are used to estimate the same relative treatment effect.

▪ Often most directly relevant evidence is sparse, leading to imprecise estimation 
of key parameters

4
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Network meta-analysis

What is Network Meta-analysis?
A B Pair-wise Meta-Analysis

A

CB

D

(a)

A C

B D
(b)

Indirect Comparisons

• The existence of “evidence loops” 
means that there is both DIRECT
evidence and INDIRECT evidence on 
the same contrast

• More data → estimates more precise, 
more robust (less sensitive to any one 
source of data)

• Possible to estimate additional 
parameters.

5

Basic & Functional parameters
1. Four treatments 1, 2, 3, and 4

2. Take treatment 1 as the reference treatment

3. Then the treatment effects (log odds ratios) of 2, 3, and 4 relative to 1 are 
the basic parameters

4. Give them priors:  d12, d13, d14 ~ N(0,1002)

Remaining contrasts are functional parameters

d23 = d13–d12;     d24 = d14–d12;      d34 = d14–d13

▪ Consistency equations define these relationships: dck = d1k – d1c

▪ Consistency follows from the decision to synthesise the data and confidence in 
study selection criteria

– Can/should be statistically checked when possible

6Lu & Ades (2004) https://doi.org/10.1002/sim.1875

https://doi.org/10.1002/sim.1875
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Inconsistencies

In a pre-specified population…

▪ The true treatment effects must be consistent

▪ But there may be inconsistencies in the EVIDENCE

▪ Check for conflict across different evidence sources

▪ Different methods proposed for

– Global checks

– Local checks

– Active area of research

7Dias et al. https://doi.org/10.1177/0272989X12455847

Notation for the Model: binary 
data
▪ Define

ri,k – the number of events in arm k of trial i
ni,k – the number of patients in arm k of trial i
pi,k – the probability of an event in arm k of trial i
ti,k – the treatment given in arm k of trial i

k = 1,2,3, …, nai

i = 1, 2, …, ns

nai=number of arms in study i
ns=number of studies
nt=number of treatments in the network

8
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Random Effects NMA Model
For treatment in arm k in study i

Likelihood:

Model: 
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Consistency equation, ensures correct 
comparison made

Between study variance (heterogeneity): Assumed common
across treatment comparisons

Probability of an event in arm k of study i

log-odds ratio for treatment in arm k of study i compared to 
treatment in arm 1 of study i
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i is considered a nuisance parameter, not of interest
dk is the log-odds ratio for treatment k compared with treatment 1
Set d1 =0 (log-odds ratio for treatment 1 compared with itself)

9

log-odds of event in arm 1 of study i (note 
treatment in that arm)

Bayesian framework
PRIORS DISTRIBUTIONS
▪ Typically vague for relative treatment effect parameters

– Informative prior distributions for these parameters are rarely used and would require strong 
justification.

– Log-odds ratios can take any value

▪ Between studies heterogeneity often given a wide (scale-dependent) Uniform prior
– eg Uniform(0,5) or Uniform(0,2)

▪ Specification of vague priors on variance components is complex area
▪ Bayesian approach allows incorporation of external evidence on heterogeneity, based on empirical 
evidence

– Higgins and Whitehead (1996) https://pubmed.ncbi.nlm.nih.gov/8981683/

– Turner et al. (2012, 2015) https://doi.org/10.1093/ije/dys041 , http://dx.doi.org/10.1002/sim.6381

– Rhodes et al. (2014) https://doi.org/10.1016/j.jclinepi.2014.08.012

▪ Frequentist estimation is also possible
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https://pubmed.ncbi.nlm.nih.gov/8981683/
https://doi.org/10.1093/ije/dys041
http://dx.doi.org/10.1002/sim.6381
https://doi.org/10.1016/j.jclinepi.2014.08.012
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Generic NMA RE model
THE UNDERLYING MODEL IS

ik i ik  = +

continuous measure of the 
treatment effect

effect of baseline 
treatment in trial i

trial-specific treatment effect of 
treatment in arm k relative to the 

treatment in arm 1
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11RE: random effects

Making best use of evidence

▪ Often restrict dataset to only include treatments of interest

▪ Leads to sparse networks

– Few comparisons (no indirect evidence)

– Few studies per comparison

▪ Wastes evidence that has been generated and could provide more meaningful 
inferences

– Particularly important when quantification of relative treatment effects and 
associated uncertainty is used for decision-making

12

RELEVANT EVIDENCE
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Making best use of evidence
BASIC PRINCIPLES TO INCREASE PRECISION
▪ Evidence synthesis must use all relevant evidence

▪ Avoid arbitrary selection of studies or outcomes

▪ Assumptions must be transparent and acceptable to all stakeholders

– Often requires clinical opinion to validate

▪ Use “all relevant evidence” which may include

– Different doses (but only licensed dose can be recommended)

– Other (related) outcomes

– Other (related) populations (children vs adults)

– Different study types (observational as well as RCTs??)

13

Making best use of evidence
BORROWING INFORMATION ACROSS DOSES
▪ Intervention (treatment) is defined as a drug/agent given at a particular dose

▪ Whilst interventions at unlicensed doses may not strictly be of interest for 
decision-making, studies that compare different doses can provide additional, 
relevant, evidence for synthesis.

▪ Use a synthesis model that “borrows” information across doses

– requires data on different doses of a drug of interest to be available

– Combine with NMA to compare different agents, given at different doses

14
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▪ Model-based meta-analysis (MBMA) used in drug development to inform decision-
making and future trial designs

– uses plausible physiological time-course or dose-response models

– Tends to be arm-based and not respect randomisation

▪ Model-based NMA combines MBMA with NMA

– works at the level of the relative effects so respects randomization

– allows estimation and prediction of treatment effects at multiple time points or 
doses

– Allows assessment of evidence consistency across comparisons

▪ R packages available on CRAN: 

– MBNMAtime https://cran.r-project.org/package=MBNMAtime

– MBNMAdose https://cran.r-project.org/package=MBNMAdose

Model-based NMA (MBNMA)

Pedder et al. (2019) https://doi.org/10.1002/jrsm.1351
Mawdsley et al (2016) https://doi.org/10.1002/psp4.12091 15

▪ Information sharing via “model-based” approach that functionally incorporates 
a dose-response relationship

– Bayesian framework

▪ Dose-response function fitted to study-specific relative effects

– Preserves within-study randomisation

– Model fit compared to “split” NMA (where possible)

– Assess consistency assumption

▪ Uses additional evidence from studies (or arms) of doses not of primary interest

– borrow strength through consistency relationship and dose-response 
relationship

Dose-response NMA

16Mawdsley et al (2016) https://doi.org/10.1002/psp4.12091

https://cran.r-project.org/package=MBNMAtime
https://cran.r-project.org/package=MBNMAdose
https://doi.org/10.1002/jrsm.1351
https://doi.org/10.1002/psp4.12091
https://doi.org/10.1002/psp4.12091
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Generic NMA RE model
THE UNDERLYING MODEL IS

ik i ik  = +
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17RE: random effects

MBNMA dose-response model

ik i ik  = +

continuous measure of the 
treatment effect

effect of baseline 
treatment in trial i

trial-specific treatment effect of 
treatment in arm k relative to the 

treatment in arm 1
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We define the relative effect of treatment               relative to reference              via 
a dose-response curve:

( ),k kx a ( )1 1,x a

( ) ( ) ( )
1 1, , ,

,
kk k

k ax a x a
d f x =
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Treatment Level Consistency
FOR ALL TREATMENTS  

▪ Apply consistency equation at the level of the dose response curve

▪ Methods to check consistency available

Pedder et al. (2022) https://doi.org/10.1002/sim.9270

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , , , , , , ,
-      
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Dose-response: Emax model

= 0 for placebo
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treatement defined by 

dose of agent x a

0 ( , )aE f x +

Dose-response function:

https://doi.org/10.1002/sim.9270
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Dose-response function on relative effects
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0 ( , )aE f x +

Dose-response function: treatement defined by 

dose of agent x a

▪ 70 studies of 8 interventions compared at 
multiple doses

▪ Outcome: % patients with pain relief at 2h

▪ Treatment effect modelled as log-Odds Ratio

▪ Placebo treated as zero dose of all agents

Illustrative dataset: 
Triptans in migraine

22
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▪ Fitting structural dose-
response function 
increases precision versus 
standard “split” NMA…

– assess fit of dose-response 

model by comparing to split 

NMA results

▪ Assumes that dose-
response relationship is 
correctly specified

– Here used Emax 
function but could 
use others

Triptans: connected network

23

Dose x2 of Agent a2 compared to 
Dose x1 of Agent a1

2 2 1 1( , ) ( , )f x a f x a = −

Relative effect at any dose

24
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Implementation
▪ Compare:

– Lumped NMA: all doses assumed to have same effect (ignore dose)

– Split NMA: no relationship assumed across doses of the same agent

– Different model-based NMA

• E.g. linear, Emax, others

▪ Assess goodness of fit (e.g. using DIC or similar), residual deviance and 
heterogeneity

▪ Check consistency

25

https://cran.r-project.org/package=MBNMAdose

▪ Fits Bayesian dose-response MBNMA 
▪ Models different dose-response functions
▪ Can check consistency in data
▪ Allows for 

– class effects (sharing of parameters within a class)
– Including study-level covariates (meta-regression)

▪ Produces 
– summary tables, treatment ranks and plots of key parameters
– Outputs for comparing results from two models e.g. MBNMA vs NMA
– Outcome predictions at different doses

▪ Includes several example networks, including the triptans network
▪ Models also relevant for non-drug interventions

– E.g. physical activity: dose is exercise intensity

MBNMAdose

26

https://cran.r-project.org/package=MBNMAdose
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• Dose response not monotonic

• User-specified function

Figure 3 Dose-response relationship between 

physical activity dosage and functional capacity. 

▪ Point estimates and credible intervals from a 

‘split’ network meta-analysis in which each dose 

of physical activity is treated as an independent 

intervention.

British Journal of Sports Medicine

http://dx.doi.org/10.1136/bjsports-2022-106409

Optimal dose and type of physical activity to improve functional 
capacity and minimise adverse events in acutely hospitalised 
older adults (Gallardo-Gómez et al, 2023)

27

▪ Sharing of information via dose-response relationship can: 

– improve precision

▪ Uses relevant evidence on the interventions of interest

– If there is a dose-response relationship, then evidence on an agent at one dose 
provides evidence that is relevant for other doses

▪ Availability of evidence at different doses is key

– Phase II and non-licensed dose studies should be included in systematic review

– Will increase burden of data extraction, but can strengthen inferences

▪ It may be possible to share dose-response parameters from different populations 
based on understanding of pharmacometrics

– E.g. adults to children

▪ Can be useful to link disconnected networks of evidence

Comments

28

http://dx.doi.org/10.1136/bjsports-2022-106409
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Pedder et al. (2021) https://doi.org/10.1177/0272989X20983315

▪ Comparisons between disconnected treatments 
not possible without making strong assumptions.

▪ Dose-response MBNMA can be used to connect 
networks using the assumed dose-response 
relationship

– Estimates functional relationships for dose-
response models (eg Emax model)

▪ Allows interpolation to predict outcomes for 
doses not in the original trials

Joining the dots
CONNECTING NETWORKS

29

▪ Interest in comparing licensed doses of Sumatriptan and Rizatriptan: S1 vs R1

▪ Disconnected network

Joining the dots via Placebo

30

https://doi.org/10.1177/0272989X20983315
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▪ It can work well when the dose-response function is well estimated in the 
disconnected network components

– Needs doses close enough to Placebo, along the curvature and towards the 
asymptote of the Emax function

▪ Typically unable to check assumptions since no data

– See Pedder et al. (2021) for an example where a large network was 
artificially disconnected   https://doi.org/10.1177/0272989X20983315

▪ Ongoing work to explore different scenarios.

Does it work?

31

Class models
▪ Sometimes there are many treatment options, but treatments fall into classes

▪ Treatments in the same class are assumed to have similar (but not identical!) effects

– Eg if one SSRI works for depression, the others are likely to work too, to a similar 
extent

▪ A class model borrows strength across treatments in the same class

– Effects of treatments in a class are distributed around a common class mean 
with a within-class variance

– Treatment effects are shrunk to class mean (like a random effects meta-analysis)

▪ Estimates are more precise

▪ The original treatment definitions are retained

▪ Can help connect networks when disconnected treatment(s) are within a class

32

https://doi.org/10.1177/0272989X20983315
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Example: COPD

▪ Treatments for chronic obstructive pulmonary disease (COPD)

– Cochrane Review: Kew at al 2014
http://dx.doi.org/10.1002/14651858.CD010844.pub2

▪ Outcome: mean difference on St George's Respiratory Questionnaire (SGRQ) 
total score at 6 months

▪ 25 trials, 18 treatments compared

– 39 pairwise comparisons made

▪ Treatments belong to 5 classes: Placebo, Long-active β2-agonists (LABA), 
Long-acting muscarinic antagonists (LAMA), Inhaled corticosteroids (ICS) and 
LABA+ICS.

33

SGRQ (6 months)

34SGRQ: St George's Respiratory Questionnaire

http://dx.doi.org/10.1002/14651858.CD010844.pub2
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Placebo

Form 12 (2)

Ind 300 (1)

Ind 150 (1)

Salm 50 (2)

Tio 5 (1)

Tio 18 (1)

Acl 200 (2)

Acl 400 (2)

Gly 50 (1)

Bud 400 (2)

Flut 500 (2)

Mom 400 (2)

Form-bud 12/160 (2)

Form-bud 12/320 (2)

Form-mom 12/200 (2)

Form-mom 12/400 (2)

Salm-flut 50/500 (2)

-8 -6 -4 -2 0
SMD

Dashed lines: individual treatment analysis
Solid lines: class analysis mean difference

NMA with and without class effects

35

LABA

LAMA

ICS

LABA
+ ICS

class effect for 
LABA is -2.3

Discussion
ADVANTAGES
▪ Models with functional relationships or borrowing of information across studies (e.g. by class) rely 
on correct specification of the dose-response function or borrowing conditions 

– Expert knowledge is required to assess suitability
▪ Estimates more precise and allow for better decisions

– Subject to model assumptions
▪ Need to have a priori clinical plausibility as usually very few data/class elements to check 
assumptions

– Especially useful when data sparse or when certain combinations are missing
▪ But needs to be convincing

– Expert opinion and biological plausibility will be crucial
▪ Can be used to connect networks

– Assumptions may be more plausible than other methods to connect networks
Thom et al. (2022) https://doi.org/10.1177/0272989X221097081

36

https://doi.org/10.1177/0272989X221097081
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Discussion
DISADVANTAGES
▪ Requires sufficient data

– Doses per treatment
– Treatments per class

▪ May not work when evidence is too sparse
– When few doses available, dose-response function parameters estimates will be too uncertain
– Requires sufficient “spread” of doses across dose-response function

▪ Can use additional information on dose-response function from early phase dose-finding studies
– To specify functional form?
– To inform prior distributions on some parameters?

▪ Class assumptions can be combined with dose-response modelling
– Class assumptions on treatment effects or dose-response parameters

▪ Additional data searching and extraction burden for all doses of relevant drugs: 
When is it worth it?

37

Thank you


