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Abstract

Quantum mechanics allows the distribution of intrinsically secure encryption keys by optical

means. Twin-field quantum key distribution is the most promising technique for its implementation

on long-distance fibers, but requires stabilizing the optical length of the communication channels

between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by in-

terleaving the quantum communication with periodical adjustment frames. In this approach, longer

duty cycles for the key streaming come at the cost of a looser control of channel length, and a

successful key-transfer using this technique in a real world remains a significant challenge. Using

interferometry techniques derived from frequency metrology, we developed a solution for the simul-

taneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed

fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel

length variations to <1%, representing an effective solution for real-world quantum communications.

Quantum key distribution (QKD) enables to share secret cryptographic keys between distant parties,
whose intrinsic security is guaranteed by the laws of quantum mechanics [1–3]. Besides pioneering ex-
periments involving satellite transmission [4, 5], the challenge is now to integrate this technology on the
long-distance fiber networks already used for telecommunications [6–15]. The maximum secure key rate
for QKD decreases exponentially with the channel losses. Although the reach could be extended using
quantum repeaters, the related research is still at a rudimentary level and these devices are far from
operational [16–18]. Nowadays, intercity distances could only be covered using trusted nodes [13], whose
security represents however a significant technical issue. A fundamental resource for next-generation
long-distance secure communications is represented by the recently proposed twin-field QKD (TF-QKD)
protocol [19], because of its weaker dependence on channel loss.
In TF-QKD, the information is encoded as discrete phase states on dim laser pulses generated at distant
Alice and Bob terminals and sent through optical fiber to a central node, Charlie, where they interfere.
This idea, sketched in Fig. 1a, was proved secure against general attacks [20–24] also in the finite-size sce-
nario [25–27] and with the aid of two-way communication [28], but it is based on the critical assumptions
that the optical pulses are phase-coherent in Alice and Bob and preserve coherence throughout the path
to Charlie. While the first requirement can be fulfilled by phase-locking the two QKD lasers in Alice and
Bob to a common reference laser transmitted through a service channel, the uncorrelated fluctuations of
the length and refractive index of the connecting paths (i.e. the optical length) introduce phase noise to
the system and reduce the visibility of the interference measurement. In proof-of-principle experiments
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Figure 1: Principle schemes of TF-QKD. a) In ideal TF-QKD, Alice and Bob encode quantum
states (QS) on local lasers, attenuated to the single-photon level and with equal frequencies νA = νB.
The resulting signals are sent to Charlie, where they interfere on single-photon detectors (D0 and D1).
b) In practical implementations, a reference laser with frequency νR is sent to Alice and Bob through
a service fiber, to phase-lock the QKD lasers and ensure νA = νB = νR. After information encoding,
QKD lasers are sent to Charlie through the QKD fibers, whose optical-length-changes are detected by
interleaving the key streaming with classical transmission. Optical length fluctuations are counteracted
by adjusting the phase of the lasers through an actuator (act.). c) In our approach, an additional
sensing laser, with frequency νS travels the service fiber with the reference laser, and the QKD fibers
together with the QKD lasers. It can be spectrally separated because νS falls in a different channel of the
wavelength-division-multiplexing grid. While QKD lasers interfere on D0 and D1, the classical signals at
νS are phase-compared on a photodiode (PD) to detect the noise of both the service and QKD fibers.
This allows tight control of the fiber noise and simultaneous key streaming.

based on spooled fibers [29–33], this effect was mitigated by interleaving the QKD frames with classical
transmission frames that were used to periodically realign the phases of interfering pulses [29, 30] (see
Fig. 2b). However, this approach becomes less effective as the length of connecting paths exceeds few
hundreds of kilometers [29, 32, 33] and there is no experimental evidence that it could work in deployed
fibers, where the attenuation and phase fluctuations are considerably higher [34].
We propose a solution derived from frequency metrology. In this context, the transmission of coherent
laser radiation over thousand-kilometer-long fibers is employed to compare distant atomic clocks at the
highest accuracy [35–41]. This is made possible by the use of ultrastable lasers and the active cancellation
of the noise introduced by connecting fibers [42], and the same approach can be exploited in TF-QKD.
We realised an apparatus suitable for TF-QKD where the phase fluctuations of both the lasers and
connecting fibers are actively cancelled. This is achieved by transmitting an additional laser in the same
fiber as the QKD lasers in a wavelength-multiplexed approach. In Charlie, this is used to sense and
stabilize the channels’ optical length variations (see Fig. 1c). In a QKD experiment, this allows simul-
taneous key streaming and channels stabilization, ensuring longer duty-cycles and a tighter control of
the optical phase on long-haul deployed fibers, where interleaved approaches would fail. We implement
our solution on a real-world network where the distance between Alice and Bob is 206 km and the net
losses are as high as 65dB, demonstrating a significant progress over existing quantum communication
field trials [6–15], all limited to <100km distance and <25dB channel loss.
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The experiment

Experimental setup

The map and detailed scheme of our experiment are shown in Fig. 2. We use a pair of ultrastable lasers
with a linewidth of ∼1Hz and frequency νR =194.4THz (1542.14nm) and νS =194.25THz (1543.33nm),
which are standard frequencies of the dense wavelength-division multiplexed (DWDM) grid. The former
(hereafter, reference laser) is used as a reference for locking the QKD lasers in Alice and Bob terminals,
and is frequency stabilized to a high-finesse ultrastable Fabry-Perot cavity [43]. The latter (hereafter,
sensing laser) is used to detect the fiber noise and allows its cancellation. In our experiment, we offset-
locked it to the reference laser using an optical frequency comb [44], although alternative techniques are
possible (see Methods). They are combined using a commercial 100GHz-wide DWDM filter and sent to
Alice and Bob through separate service fibers.
At the remote terminals, the reference laser is extracted and used to phase-lock the local QKD laser. This
is recombined with the sensing laser and sent back to Charlie on the QKD fiber. This setup implements
what is needed for transmitting quantum information, nonetheless we do not realise a fully-operative
QKD transmission since this is a technical issue already demonstrated elsewhere [29–32]. Instead, our
experiment focuses on improving the system coherence, which is the essential prerequisite for any TF-
QKD protocol.
In Charlie, we interfered the QKD lasers in classical and photon-counting regimes, the latter after
attenuating the QKD lasers to the single-photon level. As the sensing laser travels the path from
Charlie to Alice and Bob together with the reference laser on the service fiber, and the backward path
together with the QKD laser on the QKD fiber, its accumulated phase contains information on the
optical length changes of connecting paths, that can be used to stabilize them. The incoming beams
at the two wavelengths are routed to separate detectors: photons from the QKD lasers interfere on a
photodiode (when doing experiments in the classical regime) or a single-photon detector (SPD, in the
photon counting regime), while the sensing laser beams are indirectly phase-compared using a pair of
photodiodes and a radio-frequency mixer. From it, the relative changes in the optical paths are extracted
and stabilised by a phase-locked loop. This is achieved by adjusting the phase of the sensing laser as
it travels the acusto-optic modulator AOMa, on Alice’s branch. Because the QKD laser also travels
through the actuator, its optical phase is stabilised as well (see Methods).
We implemented this scheme over long-haul fiber backbones connecting INRIM, in the city of Torino

(Italy), where the Charlie terminal was located, to network nodes separated by 114km and 92 km of
optical fiber with 35dB and 30dB losses (Alice and Bob terminals respectively). The overall length of
the fiber connecting Alice and Bob was thus 206km with an attenuation as high as 65 dB. The average
loss coefficient of 0.3dB/km is higher than the specified level for standard optical fibers (0.2 dB/km)
and includes discrete losses of the connectors and DWDM equipment, which play a significant role in
deployed networks. These fibers are part of the Italian Quantum Backbone and carry other services,
among which is the dissemination of atomic clock signals to research facilities of the Country [35, 36].
While conventional fiber communication protocols are based on data exchange over fiber pairs, in which
each fiber allows light propagation in a single direction, we implemented a bidirectional transmission on
a single fiber, using different DWDM channels for opposite directions. Using this approach, the second
fiber of the pair was dedicated to the sensing and QKD lasers only (see Methods). The service fibers
carry, in addition to the reference and sensing lasers, also standard data traffic and time/frequency
information, which can be conveniently used to implement ultra-precise modulation of the quantum
signals and transmit the classical information typical of any QKD protocol, including TF-QKD. Here,
we used a White Rabbit precise time protocol [45, 46] to distribute clock information for the optical
phase-lock of the QKD laser in Bob.

Results

Fig. 3 shows the interference between the QKD lasers measured on a photodiode in Charlie in a 2ms
time frame, without (a, blue) and with (b, red) active stabilization of the fiber paths. In an unstabilized
condition, several phase cycles are accumulated in the considered interval, with an instantaneous drift
of up to 30 rad/ms. When the path is stabilized, on the contrary, the phase remains stable over the
whole acquisition frame. In this measurement, the phase was stabilized on purpose at a point where
its fluctuations were directly mapped into intensity fluctuations, which enabled us to compute the cor-
responding phase noise power spectral density. This is shown in Fig. 3c: in an unstabilized condition
(blue) the phase noise rapidly diverges at low Fourier frequencies, while, when stabilization is activated
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Figure 2: Map and experimental set-up. a) Charlie was located at INRIM (Torino), while Alice
and Bob were located in shelters of the telecom network in Bardonecchia and Santhià (Imagery ©2020
Landsat/Copernicus, Imagery ©2020 TerraMetrics, Map data ©2020). b) A sketch of the Italian
Quantum Backbone, with the spans used in this experiment coloured in red and the red-filled (empty)
circles representing Charlie (Alice and Bob). c) The experimental layout. The reference laser in Charlie
is stabilized to a high-finesse cavity and the sensing laser is phase-locked to it using an optical comb.
Wavelength division multiplexers combine/separate them and add/drop bidirectional data signals. In
Alice and Bob, we detect the beat between the incoming reference laser and a local laser and phase-lock
the two. The QKD laser light is recombined with the sensing laser and sent to Charlie on a dedicated
fiber. The acousto-optic modulator AOMa adjusts the optical phase to correct for the noise introduced
by the fiber optical length variations, while AOMs is a fixed frequency shifter. The fiber noise is detected
by interfering the local sensing laser with return light from each arm. The two beatnotes are detected on
separate photodiodes and phase-compared in the RF domain. The QKD lasers interfere on a photodiode
when performing experiments in the classical regime, and on a single photon detector (SPD) in the
photon-counting regime, also used to detect background photons.
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(red), the noise is suppressed up to a bandwidth of tens of kilohertz. In both traces, the noise floor is set
by the QKD lasers at and within the locking bandwidth of 0.9MHz and the self-delayed interference of
the reference and sensing lasers. These contributions are common to the two traces. The latter becomes
proportionally higher as the length unbalance between the arms of the interferometer increases and less
stable lasers are used. The use of ultrastable lasers was crucial in our setup, where the unbalance was
22 km, i.e. 44km of differential path considering both the service and QKD fibers. As the relevant noise
processes extend up to ∼1MHz Fourier frequency, we note that an acquisition system with a minimum
measurement bandwidth of 2MHz is required to fully capture them. Devices with slower frequency re-
sponse would act as low-pass filters, leading to underestimation of the corresponding phase changes.
The QBER associated to phase-decoherence can be calculated from the standard deviation of the phase
σϕ as a function of the frame duration (see Methods). Figure 4 shows the results in a stabilized (red)
and unstabilized condition (blue). In both cases, the noise processes responsible for phase fluctuations
extinguish at timescales shorter than the inverse of the locking bandwidth of the QKD lasers (indicated
by the arrow), making σϕ negligible. However, in an unstabilized condition, the system exceeds the 1%
QBER threshold in about 100µs. At timescales longer than a few milliseconds, apparently, the phase
fluctuations do not increase further. This is an artifact caused by the limited range of the interferometer
response, which wraps the phase into the [0;π] interval. In practice, the phase wanders by tens of radians
in few milliseconds. When stabilization is activated, instead, the system settles in a condition where σϕ

= 0.13 rad, which corresponds to a QBER of 0.5%, for about 100ms. This value is determined by the
residual contribution of the reference, sensing and QKD lasers noise. For a frame duration longer than
100ms, σϕ increases due to a non perfect cancellation of the fiber optical length variations. This depends
on the fact that such variations are detected through the accumulated phase of the sensing laser, while
the reference and QKD lasers accumulate a slightly different phase because of the wavelength difference
and uncommon optical paths. This effect is largely predictable and could be reduced with dedicated
electronics and an optimised design of the experimental setup, thus allowing further extension of the
coherence-time.
The observed residual phase noise and QBER represent conservative estimates, as our measurements
were performed on a testbed with as much as 22 km of unbalance between the two arms and with stan-
dard telecom diode lasers at the Alice and Bob terminals. Further improvement could be gained using
less noisy telecom lasers [47, 48] and faster control techniques. However, already in the present condi-
tion, the system can be operated at a QBER < 3% for timescales of the order of 1 s. Figure 5 shows
the interference pattern on a 4 s timescale, and a zoom of a 1 s-long period where the system could be
operated at the maximum visibility in a QKD experiment. We also show a zoom of a 100ms-long region
where the interferometer operates far from the deterministic condition. With such a stability, in a QKD
experiment, it becomes possible to gather enough photon statistic for realigning the phase on the basis
of the QBER, thus virtually ensuring even longer duty cycles.
The same measurements were repeated by attenuating the QKD lasers at the remote terminals by ∼80 dB,
so that only few thousands of photons/s reach the detector in Charlie, under similar operating conditions
as in recent TF-QKD experiments [29–32]. For this measurement, we replaced the photodiode with an
SPD and recorded the number of counts as a function of time. We were able to reproduce the same
visibility as with the classical beams, showing substantial agreement between the two approaches.

In view of the implementation of this technique in a QKD experiment, an aspect of concern is the
control of the background photons which couple to the QKD fibers from the surrounding environment,
or are originated in the QKD fibers themselves due to nonlinear effects. Only photons at the QKD lasers
wavelength are relevant to the count, as those in other bands can be filtered out. To counteract the
drop in performances of standard DWDM filters outside the C-band, we combined them with broader
filters featuring 50 dB attenuation throughout the visible and near infrared spectrum (see Methods).
This ensures efficient separation of the sensing and QKD lasers photons, and provides adequate immu-
nity to background photons from external sources even when the network occupancy and its spectral
distribution are unknown.
Background photons in the same band as the quantum signal are mainly produced by the Raman scat-
tering of the sensing laser in the QKD fiber. This problem is well known in the context of real-world
QKD and forces to use either dedicated fibers or QKD transmission in the O-band at 1310nm, where
the scattering from channels in the C-band is negligible [9,49]. In our experiment, we could minimise its
impact by ensuring that the sensing laser power coupled to the QKD fiber at the Alice and Bob termi-
nals was <1µW. Another effect contributing photons in the same band as QKD lasers is the Rayleigh
scattering of the reference laser happening in the service fiber. Rayleigh-scattered photons propagating
backward into the service fiber may fall into the QKD fiber due to evanescent coupling. In our case, the
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Figure 3: QKD lasers interference with unstabilized and stabilized fibers. We record the
interference between the QKD lasers in Charlie on a fast photodiode (the traces are normalised between
0 and 1. a) In an unstabilized condition the instantaneous phase drifts by 30 rad/ms and is folded back
when it exceeds the [0 : π] interval. b) When the fiber is stabilized, the phase remains stable. In this
measurement, the interferometer was stabilized far from the folding point, i.e. in a condition where phase
fluctuations were directly mapped into intensity fluctuations, to investigate the residual noise processes.
c) The power spectral density of the phase. A significant reduction in the noise is observed in a stabilized
condition (red) with respect to an unstabilized condition (blue). The apparent plateau observed at low
Fourier frequencies in an unstabilized condition is originated by the folding of the interferometer response.
At high Fourier frequency, similar noise is observed in the two traces, mainly due to the QKD lasers and
the self-delayed interference of the reference and sensing lasers.
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Figure 4: Phase fluctuations over time. The deviation of the phase σϕ between the two QKD lasers
interfering in Charlie at different timescales, in an unstabilized (blue) and stabilized (red) condition. For
this calculation, we acquired the interference pattern over 4 s and subdivided it in shorter time frames,
calculating σϕ for each frame. The shadowed areas indicate upper thresholds for relevant values of the
QBER, quantified as σ2

ϕ/4 in the low-noise (ϕ ≈ 0) approximation. The arrows indicate timescales
where the QKD lasers noise and the uncompensated fiber noise (uncorrelated fluctuations at the two
wavelengths) become relevant. The phase, and corresponding QBER, were retrieved from the interference
pattern according to the procedures described in the Methods.

maximum allowed power for the reference laser was 20µW, which was still enough for ensuring a stable
phase lock of the slave lasers at Alice and Bob terminals. Because this effect is stronger in the first ∼
20 km from Charlie, in case of longer distances or more lossy fibers, Rayleigh scattering could be kept
negligible by maintaining the same level of launched power, and exploiting optical amplification closer
to remote Alice and Bob terminals.
We measured the background photon rate in our setup exploiting a low noise InGaAs/InP avalanche
photodiode with quantum efficiency of 10% and dead time of 25µs. In the working conditions the ob-
served rate of background photons was (5.09± 0.01) s−1, evaluated over 24 h of measurement, primarily
attributed to Raman scattering of the sensing laser. When all the laser sources involved in our experi-
ment were switched off, the measured level of background photons was (4.76± 0.04) s−1, slightly above
the intrinsic dark count rate of our SPD, i.e. (4.52±0.03) s−1, meaning that background photons coupled
from nearby fibers or from the metropolitan environment is minimal. Overall, the background photon
rate introduced by our apparatus is of the same order of the dark count rate of our SPD, and is expected
not to significantly affect the QBER.

Discussion

We realised a setup suitable for TF-QKD and characterised it over a 206 km-long deployed fiber with
65 dB of optical loss. This is the first design for a TF-QKD setup on a commercial network under nor-
mal operating conditions and with these losses. This required solution of several fresh challenges for
the real-world implementation of TF-QKD, such as a considerably higher attenuation than on spooled
fiber (0.3 dB/km on our setup), autonomous and remote-controlled operation of the equipment at the
Alice and Bob terminals, which was deployed in telecom shelters in a non-controlled environment, and
a considerable unbalance (22 km) in the interferometer arms. Even under these conditions, we ensured
the phase coherence of interfering lasers over hundreds of milliseconds, i.e. 1000 times more than what
reported so far in laboratory trials. Furthermore, besides temperature, acoustic and seismic noise on the
fibers, our scheme also compensates non-stationary events such as those due to antropic activities, and
is expected to be robust against further up-scaling of the infrastructure in terms of length, attenuation
and phase noise.
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Figure 5: QKD lasers interference on the long term. In the central panel, the normalised interfer-
ence pattern in the stabilized-fiber condition is shown in a 4 s-long time window. The blue shadowed area
in the uppermost panel indicates a 100ms-long fraction of the time interval in which the interferometer
operated in the maximum visibility condition, i.e. the one exploited for the exchange of the bits of the
cryptographic key. The red shadowed area in the lowermost panel indicates a 100ms-long time interval
in which the interferometer operated around the 0.5 visibility. Configurations far from the deterministic
behavior of the interfermeter (i.e. far from the maximum and minimum of the visibility) are the ones
where the relation between the phase fluctuations and the QBER is linear, and could be used to realign
the phase on the long term and mitigate the residual uncontrolled optical path length variations.
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The key points of our technique lie in the use of ultrastable lasers with several hundreds of kilometers
of coherence-length, which is mandatory considering the constraints set by the network topology which
prevents from realizing perfectly-balanced interferometers, and the simultaneous transmission of sepa-
rate signals for the fiber noise detection and the key streaming. On one hand, this enables to keep the
QBER to manageable levels thanks to a tighter control of the phase; on the other hand, it allows more
advantageous duty cycles for the quantum communication. In our experiment we were able to maintain
σϕ = 0.13 rad, corresponding to a QBER of 0.5%, for about 100ms. Both aspects concur to increase the
effective key rate, which is a major advantage especially on long haul networks, where rather low rates
of a few kb/s must be already taken into account due to the fiber losses [29].
We note that the realised scheme allows rejection of the service fiber noise as well. While previous im-
plementations focus on the strategies for mitigating the noise on the QKD fiber, the issue of noise on the
service fiber was only marginally addressed so far [32, 50], proposing the Doppler noise cancellation [42]
as an effective solution. However, we note that this approach is bandwidth-limited by the time needed
by the light to travel the fiber, and would leave several radians of uncompensated phase fluctuations
in a realistic case [42]. In our multiplexed scheme, on the contrary, the noise detection is performed
upon recombination in Charlie, and the correction can be applied without delay, thus ensuring a higher
suppression. Another approach exploits a Sagnac-interferometer-based configuration [31]. We note that
these schemes would suffer from the same limitations as the Doppler stabilization [51]. On the basis of
the results obtained in this work, we also foresee the Rayleigh effect as a major source of background
photons in a Sagnac loop. Rayleigh scattering poses a limitation on the maximum distance achievable
when time division multiplexing strategy is employed [32], while the wavelength division multiplexing
strategy we are proposing is free from this limitation.
The proposed scheme can be directly implemented in real quantum communication systems. We under-
line that, together with phase fluctuation, there are other non-ideal behaviors in the encoding pattern
(modulation and phase) of the QKD lasers at the remote terminals that may increase the QBER (i.e.
reduction of the visibility interference). Among these, are the relative jitter of the clocks referencing the
patterns in Alice and Bob, and the pulses’ arrival time in Charlie which is in principle affected by the
varying delay added by the fibers. In this perspective, we note that our scheme supports a common clock
signal to be delivered to the terminals trough the service fiber. The additional timing delay introduced by
the QKD fibers is <1 ps. Thus, provided that the modulation patterns are initially matched to account
for the different lengths of the interferometer arms, the fibers delay is not expected to affect the visibility
of the interference even at the high modulation rate of ∼1GHz. However, the multiplexed approach used
to stabilize the optical phase could be further exploited to compensate for the overall jitter of the service
and QKD fibers. Finally, we note that the results of this work are not related to any specific system
architecture, and describe useful strategies for a variety of QKD protocols, significantly contributing to
the route towards quantum secure communications in a real field.
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Methods

The optical fiber network

The fibers used for this experiment are part of the Italian quantum backbone, which provides atomic
clock dissemination services to scientific and commercial users of the Country [35]. These services, as
well as standard data traffic for the remote control of the equipment at the network nodes, require
bidirectional optical transmission. To ensure compatibility with QKD, we migrated the traffic to the
single service fiber, using different wavelengths for the two directions of propagation. In particular,
time/frequency dissemination services used channel 30 and 31 of the International Telecommunication
Union (ITU) grid, corresponding to a wavelength of 1553.33nm and 1552.52nm respectively. Remote
control was established over channels 28 and 29 (wavelengths 1554.94nm and 1554.13nm). Standard
DWDM multiplexers were used to combine and separate channels 28-31 at the network nodes, while the
sensing and reference lasers travelled through the unfiltered ports, which brought ∼2dB additional losses
each.

Reference and sensing lasers

The reference laser is a fiber laser at 1542.14nm (channel 44 of the 100GHz-DWDM grid), frequency
stabilized to an ultrastable Fabry-Perot cavity with a Finesse of 120’000 using the Pound-Drever-Hall
technique [43]. The resulting linewidth is 1Hz and the short-term instability is 2× 10−15. The cavity is
made of ultra-low expansion glass, housed in high vacuum and placed on a platform for passive seismic
noise damping. We used an external acousto-optic modulator (AOM) as a fast actuator to lock the fiber
laser to the cavity. The achieved bandwidth of 200kHz is limited by the internal delay of the AOM
and by its driver. Although diode lasers offer much higher control bandwidths, their phase noise is
higher as well, which deteriorates the phase coherence and makes the use of fiber laser preferable for this
application. The reference laser is a diode laser at 1543.33nm. This wavelength lies in the middle between
the channels 42 and 43 of the 100GHz-DWDM grid, and is a standard of the advanced 50GHz-DWDM
grid. We virtually phase-locked it to the reference laser using an optical comb as a spectral bridge. The
comb is an octave-spanning Er:fiber femtosecond frequency comb with 250MHz repetition rate whose
spectral emission is centered around 1560nm. Following the technique described in [44], we detected the
beatnote of both lasers with the comb and measured their phase-difference on a mixer. This enabled us
to detect the relative phase between the two, which could not be directly measured because of the large
spectral separation. The phase error was then used to phase-lock the sensing laser acting on its current.
The offset-lock of the two beatnotes is preferable than the use of independent optical cavities, because it
ensures a tight phase-coherence between the reference and sensing lasers, which mitigates the impact of
self-delayed lasers noise on the QKD interference pattern. This is possible because the self-delayed noise
of the sensing laser is detected alongside with the optical fiber length variations and equally cancelled by
the stabilization loop. As long as this noise is common with the reference laser, it is rejected from the
QKD interference as well. An opposite mechanism would take place using independent lasers, in which
case the self-delayed noise of the sensing laser would be written onto the QKD interference. A tight
phase relation between the two lasers could be maintained even without using a frequency comb, relying
on fast electro-optic modulators and sideband-locking [52].

Phase lock of the slave diode lasers

About 20µW of the reference laser power was launched in the service fiber towards Alice and Bob
terminals. Here, commercial diode lasers with an optical power <10mW were phase-locked to it. To this
purpose, we detected the beatnote between incoming and local light on a fast photodiode and compared
it to a stable radio-frequency oscillator on a mixer in a quadrature condition. The phase error signal
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was processed by a proportional-integrative-derivative controller acting on the laser current. The phase-
locked-loop bandwidth of 1MHz results from a combination of the frequency vs current response of the
diode and the current driver’s bandwidth.
The local oscillator for the phase-locked loop in Alice (Bardonecchia) was referenced to a 10MHz signal
disseminated with a White-Rabbit Precise Time Protocol over the service fiber, with short-term frequency
stability of 1× 10−11 [45,46]. In Bob (Santhià), where this service was not activated, we used a Rubidium
oscillator with short term stability of 1× 10−12.

Cancellation of the fiber phase noise

The launched power of the sensing laser was about 1mW into each arm of the interferometer. We
stabilized the relative phase between the two return beams incoming in Charlie after travelling the path
toward the remote terminals and back. To do so, we spilled out a portion of the sensing radiation before
sending it to the remote terminals, and we detected the beatnote with the return signal on each arm. The
resulting beatnotes at 40MHz, the AOMs and AOMa frequencies, are down-scaled by a factor of 10 and
phase-compared on a mixer in quadrature condition. The resulting error signal drives a proportional-
integrative controller which adjusts the phase of both the sensing and QKD lasers by acting on the
frequency of AOMa. The bandwidth of the phase-locked loop is limited to 50 kHz, which is large enough
to fully compensate the acoustic noise introduced by the fiber and the residual self-delayed laser noise.

The normalised interference pattern

The pattern produced by the classical interference of the QKD lasers in Charlie is modelled as I =
2I0(1 + cosϕ) where I0 is the lasers’ intensity, assumed equal, and ϕ their phase difference. In the
experiment, we equalised the intensities of the two beams and aligned their polarization to maximise the
contrast. We then considered the normalised interference pattern Ī = I/4I0 = cos2(ϕ/2), which can be
regarded as the classical counterpart of a single photon interference. Operating the interferometer in a
condition where ϕ = 0 or ϕ = π corresponds to the case where all photons would be routed to one or the
other port of the beamsplitter, i.e. operation in a dark port configuration. On the contrary, when the
interferometer operates at ϕ = π/2 or ϕ = 3π/2, the probability of being detected on one or the other
port are equal. In this condition, the phase fluctuations are directly mapped into intensity fluctuations,
as in Fig. 3b. In our experiment, the residual phase fluctuations and its deviation are calculated from Ī
inverting the related equation.

Statistical methods

The variance of the phase σ2

ϕ, or its corresponding deviation σϕ at a given measurement time ta can
be directly calculated from time domain data, or as the integral of the power spectrum, which in turns
is calculated from instantaneous phase data. In our experiment, we adopted both methods. First, we
computed the Welch periodogram of the phase Sϕ(f), as retrieved from the interference pattern, and
integrated it between the Fourier frequencies f = 1/ta and f = fs/2, where fs is the sampling rate:

σ2

ϕ =

∫ fs/2

1/ta

Sϕ(f) df (1)

We note that fs must be at least twice as large as the noise bandwidth of the observed pattern to fulfil
the Nyquist-Shannon sampling theorem [53]. In addition, we evaluated the phase variance over the time
ta by dividing the data set, composed of N phase samples ϕj and with total duration T = N/fs, in
subsets of n points, where n ≈ Nta/T . We then computed the standard deviation of each subset and
averaged over the number of subsets i ≈ N/n:

σ2

ϕ = 〈
1

n− 1
Σn

j=0
(ϕj − ϕ̄)2〉i (2)

where ϕ̄ is the average phase over each subset. We verified that both methods lead to the same result.
The obtained parameter is used to evaluate the QBER. When the interferometer is in the ϕ ≈ 0 condition
and all the counts are expected to be on a single detector, the QBER represents the probability of having
clicks on the complementary one. The contribution to the QBER from decoherence is hence calculated
from the phase noise of the system according to the relation

e =

∫

(

1− cos2(ϕ/2)
)

P (ϕ) dϕ =

∫

sin2(ϕ/2)P (ϕ) dϕ (3)
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As long as ϕ ≈ 0, which is the only interesting case in practice, it can be seen that Eq. 3 is simplified
to e = σ2

ϕ/4, where σ2

ϕ is calculated from Eqs. 1 or 2. In Fig. 4 and throughout the text, we use this
relation to evaluate the QBER.

Single photon detectors

We employed a commercial fiber-coupled InGaAs/InP avalanche detector (Id Quantique ID230). The
detector mounts a Stirling cooler that enables to cool down to −90 °C, reducing the dark counts related
to the detection process to a negligible level. It operates in free-running mode, enabling asynchronous
photon detection with 150ps timing resolution, in a spectral bandwidth ranging from 900 nm to 1700nm.
The quantum efficiency is variable up to 25% and its dead time can be adjusted from 2 µs to 100µs.

Optical Filtering

Our technique is based on the transmission in the same fiber of two separate signals, the QKD lasers
and the sensing laser, both in the C-band. Besides the issues related to nonlinear effects which generate
background photons in the QKD lasers band, a key aspect is the efficient separation of the two signals
in Charlie, to avoid that photons outside the QKD laser band reach the detector. This is primarily
obtained with two cascaded 100GHz-DWDM filters, each featuring 60 dB rejection at an offset of 1.5 nm
from the central wavelength. However, the performances of standard telecom devices drop beyond
1300nm, allowing a non-negligible power from the amplified spontaneous emission of the sensing laser,
which extends to a wavelength of 1200nm, to impinge the detectors. This was suppressed by placing a
pair of additional free-space filters in front of the detectors, with nominal 50 dB rejection over the visible
and near-IR band. Their 10 nm bandwidth, combined with the stronger selectivity of DWDM filters,
ensured efficient filtering of the quantum photons. The overall losses of cascaded filtering stages amount
to 2 dB, which is the result of the 84% transmissivity of the free-space filters and the coupling losses in
the fiber/air interfaces.
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