# Octupole deformations from DFT

Jacek Dobaczewski University of York & University of Warsaw

The Workshop on the Nuclear Octupole Degree of Freedom July 25th & 26th 2019 <u>University of the West of Scotland in Paisley, UK</u>



391

Jacek Dobaczewski







### Outline

- **1. Nuclear octupole moments**
- 2. Correlations between the Schiff and octupole moments
- 3. Configurations, magnetic dipole moments, and electric quadrupole moments in <sup>229</sup>Th
- 4. Octupole collectivity in <sup>143</sup>Ba
- 5. Conclusions and further work

In collaboration with Pierre Becker, Jonathan Engel, Markus Kortelainen, and Alessandro Pastore



Jacek Dobaczewski







## Prelude



Jacek Dobaczewski















UK Research and Innovation



From Bonche, P.,

edited by J.D. Garrett et al. (World Scientific, Singapore), p. 302.

**1988, in The Variety of Nuclear Shapes** 

 $\mathsf{E}_{\pm}=(\mathsf{E}_{0}\pm\Delta)/(1\pm\varepsilon)$ 





Jacek Dobaczewski UNIVERSITY of York













 $\mathsf{E}_{\pm}=(\mathsf{E}_{0}\pm\Delta)/(1\pm\varepsilon)$ 



# Schiff vs. octupole



Jacek Dobaczewski







# Quality of the rotational approximation to the reduced matrix elements is excellent



#### <sup>225</sup>Ra Schiff moment vs. <sup>225</sup>Ra octupole moment



J.D., J. Engel, M. Kortelainen, P. Becker, Phys. Rev. Lett., 121, 232501 (2018)



Jacek Dobaczewski

UNIVERSITY of York





<sup>225</sup>Ra Schiff moment vs. <sup>224</sup>Ra octupole moment











<sup>225</sup>Ra Schiff moment vs. <sup>226</sup>Ra octupole moment





Jacek Dobaczewski UNIVERSITY of York





#### Octupole moments in <sup>224</sup>Ra and <sup>226</sup>Ra





Jacek Dobaczewski

















## What is known about <sup>229m</sup>Th?







Jacek Dobaczewski

UNIVERSITY of york







#### **Reproduction of experimental odd-even** mass staggering Adjusted pairing



https://people.physics.anu.edu.au/~ecs103/chart/

| Interaction | V <sub>o,n</sub> | V <sub>o,p</sub> |  |
|-------------|------------------|------------------|--|
| SIII        | 181.15           | 220.19           |  |
| SKM*        | 181.46           | 216.25           |  |
| SKO'        | 163.82           | 184.34           |  |
| SKXc        | 139.02           | 173.63           |  |
| SLY4        | 207.76           | 231.89           |  |
| UDFo        | 130.70           | 156.45           |  |
| UDF1        | 145.35           | 169.80<br>5      |  |



Jacek Dobaczewski

 $\Delta_n$  = 0.77 MeV

 $\Delta_{\rm p}$  = 0.68MeV

UNIVERSITY of York









SIII used before for 229Th calculations: E.Litvinova *et al.*,Phys. Rev.C, 79 064303 (2009)



Evolution of the energy of the blocked state with the octupole deformation in <sup>229</sup>Th

9



| Exploring                                                                                                                                         | Parametrisations                | Proton Q <sub>20</sub><br>(100 fm) | Proton Q <sub>30</sub><br>(1000 fm) | Magnetic<br>moment (µ <sub>N</sub> ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| Skyrme<br>parame-<br>trisations                                                                                                                   | SIII   631, 3/2><br>  633, 5/2> | 8.17<br>8.13                       | 1.70<br>2.25                        | -0.52<br>0.16                        |
|                                                                                                                                                   | SKM*   631, 3/2><br>  752, 5/2> | <b>8.66</b><br>8.65                | 1.85<br>0.28                        | -0.24<br>-0.53                       |
| Results obtained<br>while fitting pairing<br>strengths                                                                                            | SKO'   631, 3/2><br>  633, 5/2> | 8.41<br>8.15                       | 1.49<br>2.89                        | -0.56<br>-0.20                       |
|                                                                                                                                                   | SKXc   631, 3/2><br>  633, 5/2> | 8.06<br>8.16                       | 1.31<br>0.75                        | -0.53<br>-0.28                       |
| <sup>229</sup> Th <b>is not in the</b><br><b>fitting constrains</b><br>for these<br>interactions, so <b>no</b><br><b>systematics</b><br>expected. | SLY4  631, 3/2><br> 633, 5/2>   | 8.51<br>8.54                       | 2.13<br>0.68                        | -0.53<br>-0.14                       |
|                                                                                                                                                   | UDF0   622, 5/2><br>  63, 3/2>  | 8.46<br>8.32                       | 0.68<br>1.39                        | -0.44<br>-0.44                       |
|                                                                                                                                                   | UDF1   752, 5/2><br>  631, 3/2> | 8.58<br>8.48                       | 0.66<br>1.75                        | -0.40<br>-0.49 8                     |



UNIVERSITY of York









#### Evolution of the energy for the blocked <sup>229</sup>Th total energy

11







Evolution of the intrinsic proton quadrupole moment for the blocked <sup>229</sup>Th



Jacek Dobaczewski

















#### What's next for <sup>229</sup>Th?

- 1. Constrain the quadrupole moments to experimental values.
- 2. Adjust the time-odd coupling constants (Landau parameters) to experimental magnetic moments.
- 3. Perform the GCM mixing of octupole shapes.
- 4. Project the particle numbers.
- 5. Determine the  $3/2 + \rightarrow 5/2 + E2$  and M1 reduced matrix elements and their mixing together with their uncertainties.



Jacek Dobaczewski







## <sup>144</sup>Ba & <sup>143</sup>Ba



Jacek Dobaczewski







### (no pairing here and below)





Jacek Dobaczewski































UNIVERSITY of York









UNIVERSITY of York





Energy (MeV)





Jacek Dobaczewski

UNIVERSITY of York





Energy (MeV)





Jacek Dobaczewski



















![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_6.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_32_Picture_1.jpeg)

UNIVERSITY of Jork

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_6.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_6.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Picture_1.jpeg)

UNIVERSITY of York

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_6.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_6.jpeg)

Energy (MeV)

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

Jacek Dobaczewski

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_7.jpeg)

#### What's next for <sup>143</sup>Ba?

- 1. Shut your eyes, calculate, publish, drink some beer, and be generally happy.
- 2. Make some progress once functionals based on the density-independent generators become available.

![](_page_39_Picture_3.jpeg)

Jacek Dobaczewski

![](_page_39_Picture_5.jpeg)

![](_page_39_Picture_6.jpeg)

![](_page_39_Picture_7.jpeg)

![](_page_39_Picture_8.jpeg)

### Conclusions

- 1. Octupole collectivity in actinides is robustly predicted but imprecisely described.
- 2. Schiff moments are strongly correlated with octupole moments.
- 3. Details of structure of individual orbitals are important for the description of <sup>229</sup>Th, adjustments to data are mandatory.
- 4. Description of octupole collectivity is hampered by singularities in angular-momentum restoration.

![](_page_40_Picture_5.jpeg)

Jacek Dobaczewski

![](_page_40_Picture_7.jpeg)

![](_page_40_Picture_8.jpeg)

![](_page_40_Picture_10.jpeg)

# Thank you

![](_page_41_Picture_1.jpeg)

Jacek Dobaczewski

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_6.jpeg)

#### S. E. AGBEMAVA, A. V. AFANASJEV, AND P. RING PHYSICAL REVIEW C 93, 044304 (2016)

![](_page_42_Figure_1.jpeg)

UNIVERSITY of York

![](_page_42_Picture_4.jpeg)

Facilities Council

![](_page_42_Picture_5.jpeg)

#### References

- [1] Ebata S and Nakatsukasa T 2017 *Physica Scripta* **92** 064005 URL http://stacks.iop.org/1402-4896/92/i=6/a=064005
- [2] Nerlo-Pomorska B, Pomorski K, Bartel J and Schmitt C 2017 Eur. Phys. J. A 53 67
- [3] Agbemava S E, Afanasjev A V and Ring P 2016 Phys.Rev. C 93 044304
- [4] Robledo L M 2016  $Eur.Phys.J.\ A$  52 300
- [5] Nomura, Kosuke 2015 EPJ Web of Conferences 93 01007 URL https://doi.org/10.1051/epjconf/20159301007
- [6] Bizzeti P G and Bizzeti-Sona A M 2008 Phys. Rev. C 77(2) 024320 URL https://link.aps.org/doi/10.1103/PhysRevC.77.024320
- [7] Tsvetkov A, Kvasil J and Nazmitdinov R G 2002 Journal of Physics G: Nuclear and Particle Physics 28 2187 URL http://stacks.iop.org/0954-3899/28/i=8/a=305
- [8] Cocks J F C, Butler P A, Cann K J, Greenlees P T, Jones G D, Asztalos S, Bhattacharyya P, Broda R, Clark R M, Deleplanque M A, Diamond R M, Fallon P, Fornal B, Jones P M, Julin R, Lauritsen T, Lee I Y, Macchiavelli A O, MacLeod R W, Smith J F, Stephens F S and Zhang C T 1997 Phys. Rev. Lett. 78(15) 2920–2923 URL https://link.aps.org/doi/10.1103/PhysRevLett.78.2920
- [9] Garrote E, Egido J and Robledo L 1997 Physics Letters B 410 86 94 ISSN 0370-2693 URL http://www.sciencedirect.com/science/article/pii/S0370269397009428
- [10] Butler P A and Nazarewicz W 1996 Rev. Mod. Phys. 68(2) 349-421 URL https://link.aps.org/doi/10.1103/RevModPhys.68.349
- [11] Skalski J 1994 Phys. Rev. C 49(4) 2011-2017 URL https://link.aps.org/doi/10.1103/PhysRevC.49.2011
- [12] Egido J and Robledo L 1989 Nuclear Physics A 494 85 101 ISSN 0375-9474 URL http://www.sciencedirect.com/science/article/pii/0375947489901991
- [13] Robledo L M and Bertsch G F 2011 Phys. Rev. C 84(5) 054302 URL https://link.aps.org/doi/10.1103/PhysRevC.84.054302
- [14] Egido J and Robledo L 1991 Nuclear Physics A 524 65 87 ISSN 0375-9474 URL http://www.sciencedirect.com/science/article/pii/037594749190016Y
- [15] Butler P A 2016 Journal of Physics G: Nuclear and Particle Physics 43 073002 URL http://stacks.iop.org/0954-3899/43/i=7/a=073002

![](_page_43_Picture_16.jpeg)

![](_page_43_Picture_17.jpeg)

![](_page_43_Picture_18.jpeg)

![](_page_43_Picture_20.jpeg)

#### **Intrinsic Schiff moments vs. octupole moments**

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_2.jpeg)

Jacek Dobaczewski

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_7.jpeg)

#### **Intrinsic octupole moments in actinides – summary**

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

Jacek Dobaczewski

UNIVERSITY of Jork

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_7.jpeg)

#### **Laboratory Schiff moments**

$$S \equiv \langle \Psi_0 | \hat{S}_0 | \Psi_0 \rangle \approx \sum_{i \neq 0} \frac{\langle \Psi_0 | \hat{S}_0 | \Psi_i \rangle \langle \Psi_i | \hat{V}_{PT} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.},$$

$$S \approx -2 \frac{\left\langle \Psi_0 \right| \hat{S}_0 \left| \overline{\Psi}_0 \right\rangle \left\langle \overline{\Psi}_0 \right| \hat{V}_{PT} \left| \Psi_0 \right\rangle}{\Delta E}$$

$$\langle \Psi_0 | \, \hat{S}_0 \, | \overline{\Psi}_0 \rangle_{\text{rigid}} = \frac{1}{3} S_0,$$
$$\langle \overline{\Psi}_0 | \, \hat{V}_{PT} \, | \Psi_0 \rangle_{\text{rigid}} = \langle \hat{V}_{PT} \rangle$$

$$S = a_0 g \,\bar{g}_0 + a_1 g \,\bar{g}_1 + a_2 g \,\bar{g}_2$$

![](_page_46_Picture_5.jpeg)

Jacek Dobaczewski

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_9.jpeg)

## NucMagMom Collaboration (est. 2017)

- Michael Bender, Lyon
- Witek Nazarewicz, Mengzhi Chen, MSU
- Alessandro Pastore, Pierre Becker, York
- .... all wishing to join are welcome

### Literature

- B. Castel and I.S. Towner, *Modern theories of nuclear moments*, (Oxford Studies in Nuclear Physics) vol 12, ed P E Hodgson (Oxford: Clarendon).
- Gerda Neyens, Rep. Prog. Phys. 66 (2003) 633–689.
- N.J. Stone, Atomic Data and Nuclear Data Tables 90 (2005) 75–176.
- L. Bonneau, N. Minkov, Dao Duy Duc, P. Quentin, and J. Bartel, Phys. Rev. C91, 054307 (2015).

![](_page_47_Picture_10.jpeg)

Jacek Dobaczewski UNIVERSITY of Yor

![](_page_47_Picture_12.jpeg)

![](_page_47_Picture_14.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_5.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_49_Picture_1.jpeg)

UNIVERSITY of York

Jacek Dobaczewski

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_5.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_50_Picture_1.jpeg)

UNIVERSITY of York

Jacek Dobaczewski

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_5.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_51_Picture_1.jpeg)

UNIVERSITY of York

Jacek Dobaczewski

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_5.jpeg)