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Overview of Talk TAS of

e Neuromorphic computing with Spiking Neural
Networks (SNNs).

e Astrocyte — neuron networks:
Astrocyte regulation of neuronal activity.
Tripartite synapse model.

e Fault tolerant learning and self-repair in spiking
astrocyte neural networks (SANNSs):
Quad partite synapse model.

e Robotic demonstrators.
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Abstract—The computational power of formal models for networks of spiking reurons is compared with that of other
neural network models based on McCulloch Pitts neurons (i.e., threshold gates), respectively, sigmoidal gates. In
particular it is shown that networks of spiking neurons are, with regard to the number of neurons that are needed,
computationally more powerful than these other neural network models. A concrete biologically relevant function is
exhibited which can be computed by a single spiking neuron (for biologically reasonable values of its parameters), but
which requires hundreds of hidden units on a sigmoidal neural net. On the other hand, it is known that any function that
can be computed by a small sigmoidal neural net can also be computed by a small network of spiking neurons. This
article does not assume prior knowledge about spiking neurons, and it contains an exiensive list of references to the




Neuromorphic Computing: Computing with spike timings
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FIGURE 1. Simultaneous recordings (over 4 sec) of the firing times of 30 neurons from monkey striate cortex by Kriiger & Aiple (1988).
Each firing is denoted by a short vertical bar, with a separate row for each neuron. For comparison we have marked the length of an
interval of 100 msec by two vertical lines. This time span is known to suffice for the completion of some complex mulitilayer cortical

computations. Maass, Neural Networks, 10, 1659-1671 (1997).



Astrocyte - neuron networks: The tripartite synapse

Regulation of synaptic

transmission through two

pathways which regulate

probability of release (PR).

1. Direct: reduces PR.

2. Indirect: via astrocyte
increases PR.

Following synaptic failure:

* Indirect signalling via
astrocyte increases PR,
and repairs fault.
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Figure: Wade et al. Front. Comput. Neurosci. 6: 76, 2012



Self repairing Spiking Astrocyte Neural Network (SANN).
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* FPGA implementation.

* Re-establishes firing after

80% synaptic failure in 2
inputs to neuron 1. a
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Figure: Johnson et al. Proc IEEE SSCI, 2016



Fault tolerant learning and self-repair.

© SPANNER
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Combine SANN with learning. Post-Synaptic Neuron
Based on coupling between tripartite rlerewen

synapses and GABA interneuron.

GABA interneuron acts to band-pass filter and route spike
trains according to pre-synaptic firing frequencies.

Novel learning rule combines Bienenstock, Cooper Munro
(BCM) rule with Spike Time Dependent Plasticity (STDP).



Activity dependent
band pass filtering in
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Figure: Liu et al. IEEE TNNLS 30: 865-875, 2019



Quadpartite synapse: Band pass
filtering of inputs firing rate

(A) At low firing rates — inhibition 4 PR
dominates. PR is low (red). “—*—*T“

(B) With increased firing — Calcium
induced glutamate release from
astrocyte overcomes inhibition.
PR increases (green).

(C) Further increase in firing —
Calcium transient stops. PR
reduces
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»

Figure: Liu et al. IEEE TNNLS 30: 865-875, 2019

e Creates frequency selective PR as a function of pre-synaptic firing rate.
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e Model using Gaussian bandpass filter: PR = exp(



Fault tolerant learning: BCM-STDP (BSTDP) rule

Role of post-synaptic firing rates:
Modulates height of STDP learning
window.

As post synaptic firing increases:
retrograde signalling reduces PR, shuts
off learning.

Want rule that modulates learning
window as function of post-synaptic
firing rate.

Process similar to BCM rule
(Bienenstock, Cooper Munro rule)
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to post-synaptic firing rate.
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SANN network with fault tolerant learning
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Figure: Liu et al. IEEE TNNLS 30: 865-875, 2019

e Mapping of inputs to outputs using frequency selective PR.

e Creates set of “receptive fields” for difference actions j, j, k, ...

e Using binary mappings for different conditions.



Hardware results:
Fault recovery
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Application: Robot obstacle avoidance with target detection.

INPUTLAYER HIDDENLAYER OUTPUTLAYER

* Proximity sensors: Forward, Left, Right.

Figure: Millard et al. Proc DATE, 2018

 Target detection: Forward, Left, Right. Two networks:

* Prioritised activity: Obstacle avoidance, 1. Obstacle avoidance

then target detection. :
5 2. Target detection.

Actions: Forward, Left, Right.
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