Laser-assisted Nuclear Spectroscopy Studies at ISOLDE-CERN

Or, is $R=r_o A^{1/3}$? (as it is said in all textbooks)

Andrei Andreyev University of York(UK), JAEA(Tokai, Japan), CERN-ISOLDE on behalf of RILIS-Windmill-ISOLTRAP collaboration

- Reminder on Isotope Shift(IS) and Hyperfine Splitting (HFS)
- ISOLDE and our detection tools
- In-source laser spectroscopy with RILIS (Au, Hg, Bi chains)
- Collinear laser spectroscopy with COLLAPS and CRIS (Ca, In chains)
- •Conclusions

Special thanks to Ronald Garcia Ruiz (CRIS-COLLAPS Collaboration)

RIBs: Breaking Old Rules in Nuclear Physics: is R=r_oA^{1/3}?

An example: Charge radii from Charge Changing Cross Sections with RIBs

Carbon R. Kanungo et al., Phys. Rev. Lett. 117 (2016) 102501

- *Boron* A. Estrade et al., Phys. Rev. Lett. 113 (2014) 132501
- Beryllium S. Terashima et al., Prog. Theor. Exp. Phys. (2014) 101D02

Courtesy R. Kanungo

TABLE I. Secondary beam energies, measured σ_{CC} and the root-mean-square proton and matter radii derived from the data for the carbon isotopes.

Isotope	E/A (MeV)	σ^{ex}_{CC} (mb)	R_p^{ex} (fm)	$egin{array}{c} R_p^{(e^-,\mu)} \ ({ m fm}) \end{array}$	R_m^{ex} (fm)
^{12}C	937	733(7)	2.32(2)	2.33(1)	2.35(2)
^{13}C	828	726(7)	2.30(4)	2.32(1)	2.28(4)
^{14}C	900	731(7)	2.32(4)	2.37(2)	2.33(7)
¹⁵ C	907	743(7)	2.37(3)		2.54(4)
^{16}C	907	748(7)	2.40(4)		2.74(3)
^{17}C	979	754(7)	2.42(4)		2.76(3)
${}^{18}C$	895	747(7)	2.39(4)		2.86(4)
¹⁹ C	895	749(9)	2.40(3)		3.16(7)

Charge Radii from Laser-Assisted studies 2016' status

The **ISOLDE** facility at **CERN HRS** Target **1.4 GeV Protons From PSB** RIL WISARD NICOLE VITO collections **MR-To** MINIBALL Windmil COLLAPS IDS CRIS

Resonance Laser Spectroscopy of an Atom

Resonance Laser Spectroscopy of an odd-A nucleus

- More complex in odd-A (odd-odd-A) cases
- Needs to consider HFS splitting, due to coupling of nuclear I and electron spin J, resulting in total atomic spin F=I+J

Case 1: In-source Laser Spectroscopy with RILIS

Windmill Detection System

A. Andreyev et al., PRL 105, 252502 (2010)

- 34% geometrical efficiency at implantation site.
- Alpha-gamma coincidences
- Digital electronics

MR-ToF Mass Spectrometer

MR-ToF MS counts ions, thus is not limited by decay scheme or long half-lives
MR-ToF MS offers a way to separate background for direct single-ion detection using MCP (time scale: tens of ms).

Resolution for In-source Laser Spectroscopy with RILIS

Main limitation for the resolution:

Laser-assisted Nuclear Spectroscopy Studies in the Lead Region at ISOLDE-CERN

Pre-2003: Charge Radii in the Lead Region

- Shape coexistence around N~104
- Sphericity around N=126, kink in radii, high-spin isomers
- Octupole effects around N~132, inverse odd-even radii staggering

2003-2011: Charge Radii in the Lead Region

¹⁸⁰Hg@Windmill

179,185,207,208**Hg**

Isotopes with N>126 ²⁰⁷Hg HFS spectra@MR-ToF, I=9/2 also ²⁰⁸Hg! I=0

HFS spectra and Charge radii for Hg isotopes (5.Sels et al, Nature Physics, Oct 2018)

MCSM for Hg isotopes (Y. Tsunoda, T.Otsuka et al) (S.Sels et al, Nature Physics, Oct 2018)

Performed by Takaharu Otsuka's team

- Largest calculation of its kind, avoids diagonalization of >2x10⁴²-dimensional H matrix
- Radii are well reproduced.
- Results show an increase of >2 protons promoted into the h9/2 intruder state.

IS534@ISOLDE: Charge radii of Au isotopes

Are the light gold isotopes deformed, A(Au)<183?
What are the spins of ground and isomeric states?

Previous radii data (ISOLDE) ¹⁸⁵⁻¹⁹⁰Au : K. Wallmeroth et al, NPA493,224 (1989) ^{183,184}Au: U. Kronert et al, Z.Phys. A331, 521 (1988) ^{184mg}Au: F. Le Blanc et al. PRL79, 2213 (1997)

IS534: Hyperfine Splitting Scans (HFS) for ^{177,179}Au (number of alpha decays as a function of laser frequency)

Based on the number of HFS components and their intensity ratio, the gs spins of ^{177,179}Au are experimentally determined as 1/2

Case 2: COLlinear LAser SPectroscopy at ISOLDE (COLLAPS) for charge radii of n-rich ^{49,51,52}Ca isotopes

R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)

Resolution in Collinear Laser Spectroscopy

Ca (Z=20) Charge Radii

R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016) Max sensitivity ~250 ions/s

Phys. Rev. C 95, 064328

48-57Ca Masses

^{53,54}Ca, ISOLDE, F.Wienholz, Nature, 2013 ⁵⁴⁻⁵⁷Ca, RIKEN, S. Michimasa et al, PRL121, 2018

Charge Radii Systematics around Ca

 $^{50-61}$ Mn (Z=25) → [H. Heylen et al, Phys. Rev. C 94, 054321(2016)] $^{40-52}$ Ca (Z=20) → [R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)] COLLAPS/ISOLDE $^{38-51}$ K (Z=19) → [K. Kreim et al, Phys. Lett. B 731, 97 (2014)] $^{44-50}$ Sc (Z=21) → [In preparation (2018)]

⁴⁸⁻⁵²K(Z=19) \rightarrow [In preparation (2018)]

CRIS/ISOLDE

Case 3: Collinear Resonance Ionisation Spectroscopy (CRIS@ISOLDE)

- · Resonance ionization in a collinear geometry, often after charge neutralisation
- Detection of particles, rather than of photons

Nuclear Structure around In-Sn chains

- Shell evolution towards N=Z=50?
- Ordering of shell model orbits ?
- o Robustness of N=Z=50 shell closures?
- **Proton-neutron correlations?**

CC and IMSRG \rightarrow [T. Morris et al. Phys. Rev. Lett. 120, 152503 (2018)] LSSM \rightarrow [Togashi et al. Phys. Rev. Lett. 121, 062501 (2018)]

....

Indium chain with CRIS

Measurements from ¹⁰¹In (N=52) up to ¹³¹In (N=82)

Count rate (Hz)

Summary of Recent Results with CRIS and COLLAPS

Summary: Prolific recent results from laser spectroscopy at ISOLDE and very bright Future across the whole Nuclear Chart

