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Overview of Talk 7N W

*Motivation: Brain Networks & Network Theory.

oStatistical signal processing:
Measures of association, Spectra & Coherence.

«Parametric approaches to directionality.

*Non-parametric directionality:
Unconditional: decomposition of coherence.
Conditional: decomposition of partial coherence.

*Results:
Simulated data, Comparison with Granger causality,
Experimental data.

eConclusions.



Brain Networks:
Anatomical, Functional & Effective Connectivity

A Anatomical connectivity (binary directed network) B Functional connectivity C Effective connectivity
(weighted undirected network) (weighted directed network)
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Figure: Rubinov & Sporns (2010). Neurolmage 52: 1059-1069.
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Brain Networks

Directed Networks
V.S.
Undirected Networks

Non-parametric
directionality: May
provide unified
approach.

weighted directed networks
structural datasets; tract tracing

effective datasels: inference of causality
from functicnal data
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binary undirected networks

T

weighted undirected networks
structural datasets: diffusion MRI, structural MRI
functional datasets: functional MRI, MEG, EEG
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Functional connectivity: Time domain.

EEG (uV)

Single unit data
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Point process differential increments: le(t), sz(Hf)

Cross covariance: cov{dN, (t),dN,(t+z)} or cov{x(t),y(t+7)|

Point process, estimate using: #{(Fj,Sk)i (T—%) < (Sk - ) = (T+%)}

T

Times series, estimate using: + > X, Y.,
t=1



Functional connect|V|ty Frequency domain.

EEG (V)

Single unit data
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Consider correlation of function of dN,(t), dN,(t) and x(t), y(t).

Correlation of Fourier transforms.

71
Finite FT: dj (2)= D exp(-iar) or dj(2)=>x exp(-iit)
rje(O,T] t=0

Magnitude squared correlation: lim

T—oo

corr{ d; (/1),dT(ﬂu)}‘2

y

Coherence: measure of functional connectivity.



Parametric approaches to directionality

m

Granger Causality: X, = a8 X_ J+Zb Yo +&,
Model x on past history of y. =

Model y on past history of x. Vo=Y¢, % J+Zd Ve, +17,
j=1

Causality from residual variances.  ranger, 1965 aq (5.1
Other approaches:
Geweke: Similar approach to Granger,
Uses log, of ratio of residual variances to estimate causality.

Application to electrophysiology and brain signals:
Directed coherence, Directed Transfer function, Partial
directed coherence, Multivariate Granger causality, Variants...



Parametric approaches to directionality

m

Granger Causality: X, = a8 X_ J+Zb Yo +&,
Model x on past history of y. =
Model y on past history of x. yo=>c % J+Zd Vo i 7,
Causality from residual variances. =1

Granger, 1969 eq (5.1)

What are the issues with these approaches?

 Validity of VAR models.
e Selection of model order.



A non-parametric approach to directionality

Starting point is linear regression:
Measures dependence of y on past, Vo= D8y Xy +€
present and future values of x. =0

Contains information regarding directionality.

2 2
(Gy — O, )

Measure association using residual variance: R;, =

Can get this by integrating coherence: Ry, =2 j \Ryx(/l){z d4

BUT — coherence Is a ratio: \Ryx(l)(z _
(Not easy to decompose) fo(2) Ty (4)



What if the spectra were completely white?

Coherence would depend only on Ry (4

Cross-spectrum

Cross spectrum between
whitened processed: | f

This can be achieved using
MMSE Whitening approac

w
yX

A

yX

1846

MNMISE Whitening and Subspace Whitening

Yonina C. Eldar, Member; IEEE, and Alan V. Oppenh: Fellow, IEEE

Abstraci—This correspondence develops a linear whitening transforma-
tion that minimizes the mean-squared error (MSE) between the original
and whitened data, i.e..one that results in a white output that is as close
as possible to the input, in an MSE sense. When the covariance matrix of
the data Is not invertible, the whitening transformation is designed to opti-
mally whiten the data on a subspace in which it is contained. The optimal
whitening transformation is developed both for the case of finite-length
data vectors and infinite-length signals.

Index Terms—Mean-squared e
ing, whitening.

v (MSE) whitening, subspace whiten-

L. INTRODUCTION

Data whitening arises in a variety of contexts in which it is useful
to either decorrelate a data sequence prior to subsequent processing. or
to control the spectral shape after processing. Ex h data
whitening has been used to advantage include enhancing direction of
arrival algorithms by prewhitening [1]. [2]. and improving probability
of correct detection in multisignature systems [3]. [4] and multiuser
wireless communication sy

ems [5] by prewhitening

Whitening of a random sequence parallels closely the concept of or-
thogonalization of a set of vectors. Specifically. orthogonalizing a set

f. (4)f, (4

XX Yy

N
N

A) =T, (A

yX

[EEE TRANSACTIONS ON INFORMATION THEORY. VOL. 49, NO. 7, JULY 2003

in quantum mechanics [6
frames [9]. [10]
Paralleling the concept of LS orthogonalization, in this paper we de-
velop an optimal linear whitening transformation. Our criterion for op-
timality 1s motivated by the fact that, n
or signal introduces dist

and later applied to the design of optimal

eneral, whitening a data vector
tion to the values of the data relative to the
unwhitened data. In certain applications of whitening, it may be de-
sirable to whiten the data while minimizing this distortion. Therefore
in this correspondence we propose choosing a linear whitening trans-
formation that minimizes the mean-squared error (MSE) between the
original and whitened data, 1.¢.. that results in a white output that is
as close as possible to the mput in an MSE sense. We refer to such
a whitening transformation as a minimum MSE (MMSE) whitening
transformation. Extensions of this concept to other forms of covariance
aping are considered in [4], [11]

Applications of MMSE whiteming and subspace whitening to
matched-filter detectio

multiuser detection, and LS estimation are
considered in [3]. [5]. [12]-[14]. The essential idea i the detection
applications is to improve the detection performance by optimally
whitening the output of conventional receivers prior to detection using
an MMSE or subspace MMSE whitening transformation. As we
show by simulations in [3] and analytically in [5]. in many cases this
approach can, in fact, lead to improved detection performance.
To illustrate the use of MMSE whitening and subspac: i

more detail, we consider here an application of these ideas to LS es-

timatinn Thic annlication ic davelanad and avalarad in mare datail in




Reducing coherence to the magnitude squared
cross spectrum using MMSE whitening

Optimal whitening filter for process x:  w,, (1)= f, (1)

Spectrum of derived/whitened
processes now 1 at all frequencies:

Coherence direct from cross-spectrum: \Ryx(/l)(z —

Correlation from cross spectrum: Ry =25 J

-7t



Construction of directional metrics

T

. 2 1 W 2
Overall correlation measure: R}, =gj fyx(/i)\ dA
Define time domain correlation:  p,(r)= [ f;(2)e" d2
Overall correlation Is now: Ry, = prx(r)(zdr

Summative decomposition by direction, scalar coefficients:

RZ = [| oy (z) dr+p,,(0)+ [|oy(z) dr

<0 >0

Ry, =Ry +Ri,+R;

yx;0 yX;+

S LN

Reverse  Zero-Lag Forward



Decomposition of coherence by direction

(1)= jpyx(z-)e_i’” dr

Use p,,(7) to decompose <0
directional effects by fy'x;_(/l): p,,(0)
frequency:

e prx dr

>0

Can generate summative decomposition of
coherence by direction:

Ru2) =R B + RouoA) + R, (A

/ ! \

Reverse  Zero-Lag Forward



Results: Simulation 1

Three neurone network,
cortical neurone model s &
- - - = 0.25 0.25¢
IN-vivo conditions.
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Figures: Halliday (2015). J Integrative Neuroscience 14: 253-277.



Results: Simulation 2
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Figures: Halliday (2015). J Integrative Neuroscience 14: 253-277.



Results: Simulation 3

Three neurone network,
cortical neurone model
In-vivo conditions.
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Extension to multivariate non-parametric directionality.
Removal of induced correlation due to common influences:
=0

(1) Correlation induced by neuron 1: 4, (z) #0

\Jr)@

Move to framework based on multivariate partial coherence:

@_<%§ Coherence is significant:  |R,,(A)]* >0
Partial coherence is zero:  |R,,,(A)|* ~0



Conditional directionality analysis: @<@>

0

Decomposition from partial coherence: R?, =

yxjz ‘ yXIZ ‘

t\\]'—vﬁ

Conditioned Fourier transform of x:  d7 (2)=d] (1)~ fa(A) g (1)

MMSE filter for x; W, (4)= ., (1)

Pre-whitened conditional FT for x:  dw,, (1) =d;, (4)W,,(4)

Whitened partial spectrum is 1: for (4)=1, Ty

Correlation from partial cross spectrum: R2 =.L j



Construction of conditional directional metrics

Overall partial correlation measure: R}, =4 j iz ( \

w

Define time domain correlation: £y, (7 f o (A) € da

. . . 2
Overall partial correlation is: Rz = j \pyxlz \ dr

Summative decomposition by direction with scalar coefficients:

2
2
Rixz = ”sz ‘ d"+pyx|z )+ f ‘Pyx|z(7)‘ dz
<0 >0
2 2 2 2
I:zyx|z Ryx|z + Ryx|z :0 + Ryx|z i+

LN

Reverse  Zero-Lag Forward



Results: Conditional analysis =0

Simulated three cortical neuron network,
Unconditional directionality: 4. (7) )
Conditional directionality:  5,,(s) /C?
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Figures: Halliday et al. (2016). J Neuroscience Methods 268:87-97.




Comparison with Granger causality: VAR(3) network
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Granger causality:
analysis using
MVGC toolbox*
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network.
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domain directional

coefficients:
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http://www.sussex.ac.uk/sackler/mvgc/



Comparison with Granger causality: VAR(3) network
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Spike train data — muscle spindle

it Axons from higher levels in

Simultaneous recording of s Lt sen
spike timings from muscle ' . f\

spindle afferent receptors | ;
during efferent stimulation. AN ; e
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Output spike trains - muscle spindle primary and secondary
afferent spike trains: Ia, II.



Spike train data — muscle spindle

731>_<Ia Random stimulation of y,; and y,,

Vs2 I with fixed muscle length.
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Data: Rosenberg et al. (1989). Prog Biophys molec Biol 53: 1-31.



EMG — Acceleration, upper limb postural contraction

cm/s2
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Hippocampal connectivity in a model of Kainic acid
(KA) induced mesial temporal lobe epilepsy
(MTLE) In rat.

CA3 - CA1 Left: Ordinary Coherence
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Figure: Halliday et al. (2016). J Neuroscience Methods 268:87-97.



Directional analysis of Basal Ganglia — Motor cortex
Interactions in Parkinsonian rat.

In Striatum (STR), Globus 1
Pallidus (GPe) and Sub -
Thalamic Nucleus (STN). | = ~

Recording of ECoG and LFP ’ /

Analysis: Unconditional and
Conditional NPD between 4 -ty
regions. e
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Directional analysis of Basal Ganglia — Motor cortex
Interactions in Parkinsonian rat.
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Directional analysis of Basal Ganglia — Motor cortex
Interactions in Parkinsonian rat.

Conditional analysis — 0 e

Motor Cortex Striatum
Nucleus
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Figure: West et al. (2018). J Neurophysiol 119: 1608-1628.
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Conclusions 7N W

Brain connectivity: current approaches primarily
parametric.

*Non-parametric approach:
Derived from standard linear regression model.
MMSE: reduces coherency to cross spectrum.
Straightforward addition to spectral analyse.
Summative directional metrics: RZ =R%._ +RZ, +RZ.,
Summative decomposition of coherence:

R,(A) =R (A) +[Ro(2) +[Ry.(2)
Extended to partial coherence (degree one): \Ryxn(/l)
Future work:

Full multivariate model, Systematic validation against
parametric approaches, Wider range of data.
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