
Non-parametric directionality analyses of 

electrophysiological and neuroimaging 

signals.

David Halliday

Department of Electronic Engineering

University of York

Neural circuitry in C elegans (Newman, 2010)



•Motivation: Brain Networks & Network Theory.

•Statistical signal processing: 

Measures of association, Spectra & Coherence.

•Parametric approaches to directionality.

•Non-parametric directionality: 

Unconditional: decomposition of coherence. 

Conditional: decomposition of partial coherence.

•Results:

Simulated data, Comparison with Granger causality,

Experimental data.

•Conclusions.

Overview of Talk



Brain Networks:

Anatomical, Functional & Effective Connectivity

Figure: Rubinov & Sporns (2010). NeuroImage 52: 1059-1069. 



Brain Networks

Directed Networks

v.s.

Undirected Networks

Figure: Rubinov & Sporns (2010). NeuroImage 52: 1059-1069. 

Non-parametric 

directionality: May 

provide unified 

approach.



Functional connectivity: Time domain.

Point process differential increments:

Cross covariance:                                            or

Point process, estimate using: 

Times series, estimate using:
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Functional connectivity: Frequency domain.
Single unit data

Consider correlation of function of dN1(t), dN2(t) and x(t), y(t).

Correlation of Fourier transforms.

Finite FT:                                            or    
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Coherence: measure of functional connectivity.

Magnitude squared correlation:
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Parametric approaches to directionality

Granger Causality: 

Model x on past history of y.

Model y on past history of x.

Causality from residual variances.
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Granger, 1969 eq (5.1)

Other approaches:

Geweke: Similar approach to Granger,

Uses loge of ratio of residual variances to estimate causality.

Application to electrophysiology and brain signals:

Directed coherence, Directed Transfer function, Partial 

directed coherence, Multivariate Granger causality, Variants…



Parametric approaches to directionality

Granger Causality: 

Model x on past history of y.

Model y on past history of x.

Causality from residual variances.
























m

j

tjtj

m

j

jtjt

m

j

tjtj

m

j

jtjt

ydxcy

ybxax

11

11





Granger, 1969 eq (5.1)

What are the issues with these approaches?

• Validity of VAR models.

• Selection of model order.



A non-parametric approach to directionality

Starting point is linear regression:

Measures dependence of y on past, 

present and future values of x.
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Contains information regarding directionality.

Measure association using residual variance:
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What if the spectra were completely white?

Coherence would depend only on

cross-spectrum
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MMSE Whitening approach:
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Reducing coherence to the magnitude squared 

cross spectrum using MMSE whitening

Optimal whitening filter for process x:  

Spectrum of derived/whitened 

processes now 1 at all frequencies:

Coherence direct from cross-spectrum:

Correlation from cross spectrum:
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Construction of directional metrics

Overall correlation measure:  
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Summative decomposition by direction, scalar coefficients:

Reverse      Zero-Lag     Forward



Decomposition of coherence by direction

Use ρyx(τ) to decompose 

directional effects by 

frequency:
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Can generate summative decomposition of 

coherence by direction:

Reverse      Zero-Lag     Forward
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Results: Simulation 1

Network 

configuration

(Divergent)

Three neurone network,

cortical neurone model

in-vivo conditions.

Figures: Halliday (2015). J Integrative Neuroscience 14: 253-277. 
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Results: Simulation 2

Network 

configuration

(Reciprocal inhibitory)

Three neurone network,

cortical neurone model

in-vivo conditions.

Figures: Halliday (2015). J Integrative Neuroscience 14: 253-277. 
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Results: Simulation 3

Network 

configuration

(Delay)

Three neurone network,

cortical neurone model

in-vivo conditions.

Figures: Halliday (2015). J Integrative Neuroscience 14: 253-277. 



Extension to multivariate non-parametric directionality.

Removal of induced correlation due to common influences:

 32̂ Correlation induced by neuron 1:               ≠0

Move to framework based on multivariate partial coherence:

Coherence is significant:       |Ryx()|2 > 0 

Partial coherence is zero:      |Ryx|z()|2  0 



Conditional directionality analysis:

Decomposition from partial coherence:  

Conditioned Fourier transform of x:                                              

MMSE filter for x:

Whitened partial spectrum is 1:
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Construction of conditional directional metrics

Overall partial correlation measure:  
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 32̂ 

Results: Conditional analysis

Simulated three cortical neuron network, 

Unconditional directionality:

Conditional directionality:  32|1̂ 

 32̂   32|1̂ 

Figures: Halliday et al. (2016). J Neuroscience Methods 268:87-97.



Comparison with Granger causality: VAR(3) network

Granger causality: 

analysis using 

MVGC toolbox1

Simulated VAR(3) 

network.

Matrix of frequency 

domain directional 

coefficients:

,

1http://www.sussex.ac.uk/sackler/mvgc/
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NPD: 

Unconditional 

and conditional 

directionality 

analysis.
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Spike train data – muscle spindle

Simultaneous recording of 

spike timings from muscle 

spindle afferent receptors 

during efferent stimulation.

Input spike trains - random 

stimulation of two efferent static 

gamma fusimotor axons: 21, ss 

Output spike trains - muscle spindle primary and secondary 

afferent spike trains: Ia, II.



Random stimulation of γs1 and γs2

with fixed muscle length.

IIs 1 Ias 1

1s Ia

II

IIs 2 Ias 2

IIs 1 Ias 1 IIs 2 Ias 2

2s

Data: Rosenberg et al. (1989). Prog Biophys molec Biol 53: 1-31. 

Spike train data – muscle spindle



EMG – Acceleration, upper limb postural contraction 

Postural tremor: EDC 

and finger acceleration.

EMG Acc: 

Acc  EMG: 

Data: Halliday et al. (1995). Prog Biophys molec Biol 64: 237-278. 



Forward:

Reverse:

Zero-lag:

Kainic Acid injection

Hippocampal connectivity in a model of Kainic acid 

(KA) induced mesial temporal lobe epilepsy 

(mTLE) in rat.

Figure: Halliday et al. (2016). J Neuroscience Methods 268:87-97.



Figure: West et al. (2018). J Neurophysiol 119: 1608–1628.

Directional analysis of Basal Ganglia – Motor cortex

interactions in Parkinsonian rat.

Recording of ECoG and LFP 

in Striatum (STR), Globus 

Pallidus (GPe) and Sub 

Thalamic Nucleus (STN).

Analysis: Unconditional and 

Conditional NPD between 4 

regions.



Figure: West et al. (2018). J Neurophysiol 119: 1608–1628.

Directional analysis of Basal Ganglia – Motor cortex

interactions in Parkinsonian rat.

Unconditional analysis.

Propagation through 

indirect pathway.

Activation of long-loop 

in lesion state.



Directional analysis of Basal Ganglia – Motor cortex

interactions in Parkinsonian rat.

Figure: West et al. (2018). J Neurophysiol 119: 1608–1628.

Conditional analysis –

conditioned on GPe.

Control: Effects strongly 

reduced.

Lesioned: Hyperdirect

pathway active.



•Brain connectivity: current approaches primarily 

parametric.

•Non-parametric approach:

Derived from standard linear regression model.

MMSE: reduces coherency to cross spectrum.

Straightforward addition to spectral analyse.

Summative directional metrics:

Summative decomposition of coherence:

•Extended to partial coherence (degree one): 

•Future work:

Full multivariate model,  Systematic validation against 

parametric approaches, Wider range of data.

Conclusions
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