
A Substrate-Independent Framework to Characterise
Reservoir Computers

Matthew Dale1,3, Julian F. Miller3, Susan Stepney1,3, Martin A. Trefzer2,3

Abstract The Reservoir Computing (RC) framework

states that any non-linear, input-driven dynamical sys-

tem (the reservoir) exhibiting properties such as a fad-

ing memory and input separability can be trained to

perform computational tasks. This broad inclusion of

systems has led to many new physical substrates for

RC. Properties essential for reservoirs to compute are

tuned through reconfiguration of the substrate, such as

change in virtual topology or physical morphology. As

a result, each substrate possesses a unique “quality” –

obtained through reconfiguration – to realise different

reservoirs for different tasks.

Here we describe an experimental framework that

can be used to characterise the quality of any sub-

strate for RC. Our framework reveals that a definition

of quality is not only useful to compare substrates, but

can also help map the non-trivial relationship between

properties and task performance. And through quality,

we may even be able to predict the performance of sim-

ilarly behaved substrates. Applying the framework, we

can explain why a previously investigated carbon nan-

otube/polymer composite performs modestly on tasks,

due to a poor quality. In the wider context, the frame-

work offers a greater understanding to what makes a

dynamical system compute, helping improve the design

of future substrates for RC.
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1 Introduction

Reservoir Computing (RC) first emerged as an alter-

native method for constructing and training recurrent

neural networks [27,32]. The method primarily involved

constructing a random fixed recurrent network of neu-

rons, and training only a single linear readout layer.

It was found that random networks constructed with

certain dynamical traits could produce state-of-the-art

performance without the laborious process of training

individual internal connections. The concept later ex-

panded to encompass any high dimensional, input-driven

dynamical system that could operate within specific dy-

namical regimes, leading to an explosion in new reser-

voir computing substrates1.

In recent years, the reservoir computing model has

been applied to a variety of physical systems such as

optoelectronic and photonic [1,31], quantum [9,23,30],

disordered and self-organising [4,29], magnetic [16,25],

and memristor-based [8] computing systems. The way

each substrate realises a reservoir computer varies. How-

ever, each tends to implement, physically or virtually,

a network of coupled processing units.

Each implementation is designed to utilise and ex-

ploit the underlying physics of the substrate, to em-

brace its intrinsic properties to improve performance,

efficiency and/or computational power. As with many

physical systems, each can be configured, controlled and

tuned to perform a desired functionality. In all of the

above examples, this requires the careful tuning of pa-

rameters in order to produce working and optimal phys-

ical reservoirs.

1 The term “substrate” is used here to refer to any physi-
cal or virtual system that realises a reservoir computer: any
dynamical system featuring configurable parameters and a
method to observe system states.
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In general, the abstract term reservoir usually rep-

resents a single, typically static, configuration of the

substrate. For an artificial recurrent neural network,

implemented in silico, this may refer to a set of trained

connection weights, defined neuron types and topology.

For another substrate, configuration may refer to the

physical morphology, physical state, external control

signals, or complexification of the driving input signal.

This implies that the number of possible reservoirs re-

alised by one substrate depends upon the number of

free parameters and distinct dynamical behaviours re-

sulting from those parameters. For unconstrained sub-

strates, limited only by the laws of physics, this number

may be vast. Yet this does not imply that every such

configuration/reservoir is practical or useful.

In terms of all possible reservoirs realisable by one

substrate, the vast majority may be unusable in terms

of solving a task. However, some region of the sub-

strate’s configuration space may well provide interest-

ing reservoirs and potentially high-performing reservoirs,

or even reservoirs with large generalising computing

abilities.

Characterising the configuration and reservoir space

(referred to below as the behaviour space) of usable

and optimal reservoirs would help in assessing the sub-

strate’s “quality” for reservoir computing, that is, the

substrate’s ability to realise different reservoirs, and

therefore its capacity as a generic reservoir computing

substrate.

According to [7], all dynamical systems have an al-

most universal characteristic to perform useful informa-

tion processing, provided a fading memory and linearly

independent internal variables are present. However,

each dynamical system tends to suit different tasks, and

rarely, but not unattainably, will one feature a universal

set of properties to perform well across many, if not all

tasks. This implies that high-performing, task-specific,

and potentially some good task-generalising reservoir

computers can be built, leading to a vast array of new

highly-efficient and powerful computing substrates.

But first, we have to discover these good reservoirs

lying somewhere in their vast behaviour space. Our

CHARC (CHAracterisation of Reservoir Computers)

framework provides a method to do so.

2 The CHARC Framework

Dambre et al. [7] devise a quantitative measure that

is independent of physical realisation, allowing anyone

to compare the computational properties of a broad

class of dynamical systems. However, that total capac-

ity measure may not be informative enough to guide
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Fig. 1: Framework levels and building blocks.

substrate optimisation for specific tasks, or demonstrate

how expressive the substrate is in terms of realising

vastly different reservoirs.

So far, no practical framework exists to map, then

utilise, the full computational expressiveness of physical

or virtual substrates. That is, no experimental method

has been proposed to characterise the reservoir com-

puting quality of substrates, or to use measures of com-

putational properties to configure and discover optimal

reservoirs.

The challenge in creating a generic framework arises

from the enormous variety of possible substrates, and

from each substrate having its own set of configuration

and other parameters.

To tackle this non-trivial problem we have devel-

oped the CHARC framework. The main purpose of

the framework is to characterise and assess the qual-

ity of any potential RC substrate. The framework also

has a secondary purpose, to exploit the quality assess-

ment process to better understand the general relation-

ships between computational properties and task per-

formance.

To conceptualise and visualise the framework it is

divided into a series of building blocks and levels, as

shown in Fig. 1. To make use of the framework, and

to assess accuracy and validity, five stages need to be

completed. These are represented by the five levels in

the figure: 1) Definition, 2) Exploration & Mapping,

3) Evaluation, 4) Learning, and 5) Application.

Each level of the framework relies on the presence of

the level below. Each level consists of building blocks.

In general, these blocks are adaptable, and may be im-

proved by future work. For example: the current method

for exploring the behaviour space may be improved or

interchanged with another exploration technique; more

dimensions may be added to the behaviour space with

the creation of new property measures. In some cases,

explained later, some blocks/levels can even be removed.
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Fig. 2: Example of a 3-Dimensional Behaviour Space.

Here each abstract behaviour is relative to the three

chosen property measures. Given enough time to ex-

plore the space, the substrate’s dynamical/behavioural

limitations become apparent.

2.1 Definition

On the first level, a behaviour space is defined. This

abstract behaviour space represents the dynamical be-

haviour of the substrate when configured. To represent

the n-dimensional space, n independent property mea-

sures are used, defining the axes of the space (see ex-

ample in Fig. 2). It is hypothesised here that the more

distinct measures applied, the better the representation

of the substrate’s dynamical freedom and thus the bet-

ter the accuracy of the quality measure. In the example

later in this paper, we use three measures, and hence a

three dimensional behaviour space.

2.2 Exploration & Mapping

The next level is Exploration & Mapping. To determine

a true measure of quality, rather than an approxima-

tion, exploration of the behaviour space would require

an exhaustive search of the substrate’s parameter space,

which is infeasible. Rather than exhaustive search, an

implementation of novelty search (NS) [18] is recom-

mended. Novelty search is an open-ended genetic algo-

rithm designed to explore a behaviour space for novel

solutions until some user-defined termination criteria is

met.

When applied in this setting, novelty search charac-

terises the substrate’s search space and as a by-product

outlines its dynamical boundaries, when given enough

time. This experimental characterisation can then help

determine the practical use, if any, of the substrate,

or whether the selected method of configuration and

observation (which itself may be optimised) is appro-

priate.

Throughout the exploration process every behaviour

is stored in a database forming a behavioural map of

the substrate for later use.

2.3 Evaluation

The next level is Evaluation. To determine quality, the

spread and number of distinct behaviours recorded in

the abstract behaviour space (the database) is quantita-

tively measured. Quality is therefore a measure of how

many distinct dynamical behaviours the substrate ex-

perimentally possesses in the defined behaviour space.

The measure itself can be simple; however, any measure

of quality requires some contextual reference against

which the measure can be regarded as high or low, good

or poor. To assess the quality of a new substrate it is

recommended that an easy to define/inspect, ideally

known to be high-performing, reference substrate first

be assessed and evaluated. In the work here, to provide

a baseline substrate to compare to, and to evaluate the

framework, simulated Echo State Networks (ESNs) [13]

are used as a reference substrate. In the future, if better,

i.e. good generalising substrates with higher degrees of

dynamical freedom, are found, the reference substrate

can be replaced.

By this point, use of the framework will have re-

sulted in a quality assessment of a particular substrate.

2.4 Learning

The learning level fulfils the secondary goal of the frame-

work: to relate computational properties and behaviours

to task performance.

As explained in [10], relating properties to expected

performance is non-trivial for all task applications, as

good properties for one task may be detrimental to an-

other. Therefore, no single set of properties will always

lead to high performance. However, the relationship be-

tween properties and a single task may be simpler to

determine.

To model and estimate the relationships between

properties and task performance a broad range of prop-

erties and performances are required.

As part of the exploration phase, diverse properties

are sought and stored in the database. Then, at the

evaluation level, task performance of every behaviour/

reservoir in the database is assessed. This combination

then leads to a basic dataset to train a learning system,

for example, a neural network.
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2.5 Application

At this level, the learnt relationships can be reused to

predict the performance of any substrate – without the

need to evaluate directly – based on the reference sub-

strates behaviours and task performances. As a result,

the cost of future task assessments can be significantly

reduced by predicting task performances based on sim-

ilarly behaved substrates.

3 Task-Independent Properties

In order to create the behaviour space, each dimen-

sion of the space must be defined. In the following sub-

sections different computational properties and mea-

sures are discussed.

A potential problem in defining the behaviour space

is that some properties are difficult, if not impossible,

to measure across all substrates. It is therefore impor-

tant to remember that any properties applied with the

framework should represent the behaviour of the sys-

tem independent of its implementation.

3.1 Kernel and Generalisation Rank

Kernel quality is a measure of the reservoir’s ability to

produce a rich non-linear representation of the input

u and its history u(t − 1), u(t − 2), . . .. Also known as

the linear separation property, it was first introduced by

Legenstein & Maass [17] to measure a reservoir’s ability

to separate distinct input patterns. As many practical

tasks in machine learning are linearly inseparable, reser-

voirs would not be able to solve such problems without

some non-linear transformation of the input.

The kernel quality measure is performed by comput-

ing the rank r of an n ×m matrix M , outlined in [3].

To create the matrix M , apply m distinct input streams

ui, ..., um and collect the n resulting reservoir states xui .

Place the states xui
in each column of the matrix M

and repeat m times. The rank r of M is computed us-

ing Singular Value Decomposition (SVD) and is equal

to the number of non-zero diagonal entries in the uni-

tary matrix. The maximum value of r is always equal

to the smallest dimension of M . To calculate the effec-

tive rank, and better capture the information content,

remove small singular values using some high threshold

value. To produce an accurate measure of kernel quality

m should be sufficiently large, as accuracy will tend to

increase with m until it eventually converges.

The generalisation rank is a measure of the reser-

voir’s capability to generalise given similar input streams.

It is calculated using the same rank measure as ker-

nel quality, however each input stream ui+1, ..., um is

a noisy version of the original ui. A low generalisation

rank symbolises a robust ability to map similar inputs

to similar reservoir states.

Reservoirs in ordered regimes typically have low rank-

ing values in both measures, and in chaotic regimes

both are high. In general, a good reservoir should pos-

sess a high kernel quality rank and a low generalisation

rank [3]. However, in terms of matching reservoir dy-

namics to tasks, the right balance will vary. These two

measures are important, but by themselves do not cap-

ture enough information about the reservoir’s dynami-

cal properties.

3.2 Memory Capacity

A simple measure for the linear short-term memory ca-

pacity (MC) of a reservoir was first outlined in [14]

to quantify the echo state property. For the echo state

property to hold, the dynamics of the input driven reser-

voir must asymptotically wash out any information re-

sulting from initial conditions. This property therefore

implies a fading memory exists, characterised by the

short-term memory capacity.

To evaluate memory capacity of an N node reser-

voir, we measure how many delayed versions k of the

input u the outputs y can recall, or recover with preci-

sion. Memory capacity MC is measured by how much

variance of the delayed input u(t − k) is recovered at

yk(t), summed over all delays.

MC =

2N∑
k=1

MCk =

2N∑
k=1

cov2(u(t− k), yk(t))

σ2(u(t))σ2(yk(t))
(1)

A typical input consists of t samples randomly cho-

sen from a uniform distribution between [0 1]. Jaeger

[14] demonstrates that echo state networks driven by

an i.i.d. signal can possess only MC ≤ N .

A full understanding of a reservoir’s memory capac-

ity cannot be encapsulated through a linear measure

alone, as a reservoir will possess some non-linear capac-

ity. Other memory capacity measures proposed in the

literature quantify the non-linear, quadratic and cross-

memory capacities of reservoirs [7].

4 Behaviour Exploration

In general, theoretically determining the computational

capacity of a system helps us understand its limitations.

One might think that this knowledge should then be
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used to construct or search for reservoirs with a max-

imal computational capacity. However in practice such

maximisation is often unnecessary, time-consuming and

may in fact hinder performance. A balance between

properties is essential to match reservoir dynamics to

tasks.

The CHARC framework starts by exploring and map-

ping a vast range of dynamics for which the right bal-

ance can be selected for any task. In order for the frame-

work to function properly and translate to many sys-

tems, this mapped space of dynamics requires substrate-

independence.

To be substrate-independent, exploration must func-

tion without any prior knowledge of how to construct

reservoirs far apart from each other in the observed be-

haviour space. Exploration cannot, therefore, be mea-

sured in the substrate parameter space: diversity in ob-

served dynamics does not always coincide with diversity

in substrate-specific parameters.

4.1 Novelty Search

In the following example of the framework, an open-

ended evolutionary algorithm called novelty search (NS)

[18,19,20] is adopted. In our implementation, novelty

search is used to characterise the substrate’s behaviour

space, i.e. the dynamical freedom of the substrate, by

sampling its most interesting dynamical behaviours.

In contrast to objective-based techniques, a search

guided by novelty has no explicit task-objective other

than to maximise novelty. Novelty search directly re-

wards divergence from prior behaviours instead of re-

warding progress to some objective goal.

Exploration without objectives has been shown, some-

what counter-intuitively, to outperform objective-based

methods with deceptive task and solution spaces [26]. A

deceptive objective (fitness) landscape is one where lo-

cal optima are pervasive. When characterising substrate

dynamics, this is of particular concern due to the high

dimensionality of the substrate’s computational prop-

erties which are only partially described, i.e. measures

are only approximate.

Novelty search explores the behaviour space by pro-

moting configurations that exhibit novel behaviours.

Novelty of any individual is computed with respect to

its distance from others in the behaviour space. To track

novel solutions, an archive is created holding previ-

ously explored behaviours. Contrary to objective-based

searches, novelty takes into account the set of all be-

haviours previously encountered, not only the current

population. This enables the search to keep track of

(and map) lineages and niches that have been previ-

ously explored.

To promote further exploration, the archive is dy-

namically updated with respect to two parameters, ρmin

and an update interval. The ρmin parameter defines a

minimum threshold of novelty that has to be exceeded

to enter the archive. The update interval is the fre-

quency at which ρmin is updated. Initially, ρmin should

be low, and then raised or lowered if too many or too

few individuals are added to the archive in an update

interval. Typically in other implementations, a small

random chance of any individual being added to the

archive is also set.

In the following implementation, a small initial ρmin

is selected relative to the behaviour space being ex-

plored and updated after a few hundred generations.

ρmin is dynamically raised by 20% if more than 10 in-

dividuals are added and ρmin is lowered by 5% if no

new individuals are added; these values are guided by

the literature.

To maximise novelty, a selection pressure rewards

individuals occupying sparsely populated regions in the

behaviour space. To measure local sparsity, the average

distance between an individual and its k-nearest neigh-

bours is used. A region that is densely populated results

in a small value of the average distance, and in a sparse

region, a larger value. The sparseness ρ at point x is

given by:

ρ(x) =
1

k

k∑
i=1

dist(x, ξi) (2)

where ξi are the k nearest neighbours of x.

The search processes is guided by the archive con-

tents and the current behaviours in the population, but

the archive does not provide a complete picture of all

the behaviours explored. Throughout the search pro-

cess the population tends to meander around existing

behaviours until a new novel solution exceeding the

novelty threshold is discovered. To take advantage of

this local search, here all the explored behaviours are

stored in a separate database D. This database stores

all the information used to characterise the substrate

later, and has no influence on the search, which uses

only the archive.

4.2 Novelty Search Implementation

In the literature, novelty search is frequently combined

with the Neural Evolution of Augmented Topologies

(NEAT) [20,28] representation; this neuro-evolutionary

method focusses on adapting network topology and com-

plexifying a definable structure. For the CHARC frame-

work, a more generic implementation is desired: a form

of evolutionary search algorithm that uses co-evolution
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and speciation, but features a minimalistic implemen-

tation not based on any specific structure or represen-

tation. For these reasons, an adaptation of the steady-

state Microbial Genetic Algorithm (MGA) [11] com-

bined with novelty search is used here. The MGA is a

genetic algorithm reduced to its basics, featuring hor-

izontal gene transfer (through bacterial conjugation)

and asynchronous changes in population where individ-

uals can survive long periods.

To apply the MGA to the problem a number of

adaptations are required. Caching fitness values in the

standard steady-state fashion is not possible, as fitness

is relative to other solutions found and stored in the

growing archive. In this implementation, no individ-

ual fitnesses are stored across generations, however the

same steady-state population dynamics are kept, i.e. in-

dividuals are not culled, and may persist across many

generations.

An overview of the evolutionary loop is given in

Fig. 3. The complete process is also outlined in pseudo-

code in Algorithm 1.

At the beginning of the search process, a random

population is created. In the population, both the sub-

strate configurations and the resulting behaviours B

are stored. This initial population is then added to the

archive A and database D.

At step 1, tournament selection with a tournament

size of two is used. To ensure speciation, the first par-

ent is picked at random and the second is chosen within

some proximity to the other determined by the MGA

parameter deme size. In this step, the fitness values

(novelty) of both behaviours are calculated relative to

population P and archive A. The individual with the

larger distance, that is, occupying the less dense region

of the behaviour space, is adjudged the winner. This

elicits the selection pressure towards novel solutions.

The microbial GA differs from other conventional GAs

as the weaker (here, less novel) individual becomes “in-

fected” by the stronger (more novel) one, replacing its

original self in the population.

At step 2, the configurations of both behaviours are

retrieved and manipulated. This constitutes the infec-

tion and mutation phase. In the infection phase, the

weaker parent undergoes horizontal gene transfer be-

coming a percentage of the winner and loser. The ge-

netic information of the weaker parent does not dis-

appear in this process, as some percentage defined by

the recombination rate parameter remains intact. In the

mutation phase, the weaker parent undergoes multiple

point-mutations, becoming the new offspring.

At step 3, the configuration of the new offspring is

untested, therefore the behaviour BChild of the individ-

ual needs to be updated. At steps 4a and 4b, the off-

spring’s behaviour and configuration are added to the

database D and it replaces the loser in the population

P .

At the last step 4c, the fitness/novelty of the off-

spring BChild is compared to both the current popula-

tion P and archive A. If the novelty of the offspring ex-

ceeds the novelty threshold ρmin, the behaviour BChild

(configuration is not needed) is added to the archive A.

Overall, three fitness values are calculated at each

generation. Two fitness evaluations occur in the se-

lection phase and a third fitness evaluation is carried

out on the offspring, in order to update the archive.

The computational complexity of the fitness function

is O(nd+ kn) using an exhaustive k-nearest neighbour

search. As the dimension d of the archive/behaviour

space is small (d = 3 property measures in the later

example), the number of k-neighbours (here k = 15)

has the dominant effect. This value of k is chosen ex-

perimentally; larger k-values improve accuracy but in-

crease run time. As the archive size increases, run time

increases proportional to archive size n. To reduce com-

plexity, Lehman and Stanley [20] describe a method to

bound the archive using a limited stack size. They find

that removing the earliest explored behaviours, which

may result in some limited backtracking, often results

in minimal loss to exploration performance.

5 Applied to Echo State Networks

In this section, we begin by defining the behaviour space

of interest and characterising the quality of the refer-

ence substrate. The chosen reference substrate is the

virtual echo state network (ESN) substrate.

The reservoir model can represent any excitable non-

linear medium that produces a high-dimensional pro-

jection of the input u(.) into reservoir states x(.). In a

conventional ESN, the reservoir state update equation

x(t) is represented as:

x(t) = f(Winu(t) +Wx(t− 1) +Wfby(t)) (3)

where f is the neuron activation function (typically a

tanh function) and the weight matrices (Win, W , and

Wfb) are collections of connection weights to inputs

(Win), internal neurons (W ), and from the output to

internal neurons (Wfb); in many cases Wfb is unused.

The final trained output y(t) is given when the reser-

voir states x(t) are combined with the trained readout

layer Wout:

y(t) = Woutx(t) (4)

A practical guide to creating and training ESNs is given

in [22], including variations such as leaky-integrator

ESNs.
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Fig. 3: Adapted microbial GA with novelty search.

Algorithm 1 Novelty search with microbial

GA algorithm

pop← random . initial random population list
length P

A← pop . archive initialised
D ← pop . database initialised
while searching do

i :∈ 1..popSize . parent 1 from pop
j :∈ deme i . parent 2 from deme
if f(pop(i), A, pop) > f(pop(j), A, pop) then

winner, loser ← i, j . fitness is novelty
else

winner, loser ← j, i

child← infection(winner, loser)
child← mutation(child)
pop(loser)← child
if child is sufficiently novel then

add child to A
add child to D
if generation == n× updategen then

update novelty threshold ρmin

As a basic demonstration of the framework, a three-

dimensional space is chosen using properties/metrics

described in section 3: memory capacity (MC), ker-

nel quality rank (KR) and generalisation rank (GR).

These three measures capture different aspects of the

reservoir, both chaos and order, and are simple to apply

to physical systems.

To evaluate and validate the framework, multiple

ESN network sizes are evolved and assessed against a

control comprising random populations the same size as

D. The four ESN network sizes chosen are: 25, 50, 100,

and 200 node. This provides a small spectrum to assess

the framework with, from simple to more complicated

reservoirs.

If novelty search performs well, i.e. better than ran-

dom at covering the behaviour space, with each ESN

network size, it might be possible to extrapolate that

the same will hold true of other network sizes, and pos-

sibly different substrates.

5.1 Measuring Quality

To evaluate the quality of each ESN network size, a

simple metric (Eqns. (5) and (6)) measures how much

of the behaviour space is covered: greater coverage im-

plies a greater degree of dynamical freedom. Statistical

measures of dispersion such as standard deviation, vari-

ance, mean absolute deviation and inter-quartile range

are not particularly suitable: they downplay outliers,

whereas we want to push the boundaries of the region

explored. Instead, the behaviour space is divided into

discrete volumes, representing these ‘behaviour voxels’,

and the quality measure defined counts how many ‘be-

haviour voxels’ are occupied: the more such behaviours,

the larger the volume of space explored.

In the 3d example, this discretised behaviour space

is captured by a cube represented by the 3d array Bi,j,k;

where the coordinate j captures discretised memory

capacity values (a continuous valued measure) and i

and k capture the kernel and generalisation rank val-

ues (already discrete); the assignment of metrics to spe-

cific coordinates is arbitrary and does not affect explo-

ration. The appropriate size of B can be deduced from

measurement constraints and from the MC bounds im-

posed on ESNs: 0 ≤ KR ≤ N, 0 ≤ GR ≤ N and
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0 ≤MC ≤ N . A simple discretisation of MC is chosen,

taking the integer part, so B is an (N + 1)3 array.

B is defined as follows. Bi,j,k = 1 (occupied) if there

is at least one individual in the database D with kernel

rank KR = i, discretised memory capacity MC = j

and generalisation rank GR = k; otherwise Bi,j,k = 0

(unoccupied):

Bi,j,k ← ∃ d ∈ D s.t. KR(d) = i

∧ bMC(d)c = j

∧GR(d) = k

(5)

The total space covered, θ, in an evolutionary run

is the number of occupied points in Bi,j,k; 0 ≤ θ ≤ N3:

θ =

N∑
i=0

N∑
j=0

N∑
k=0

Bi,j,k (6)

The behavioural voxel occupancy measure works well

for this 3d case. For higher dimensional behaviour spaces

(ones based on more properties/metrics) where the to-

tal number of voxels is considerably larger, the repre-

sentation and measure may need adapting.

5.2 Experimental Parameters

In the following experiments, regardless of ESN net-

work size etc., the same restrictions are placed on ESN

parameter ranges and weights, and the same weight

initiation processes is applied. For example, global pa-

rameters ranges include: an internal weight matrix (W )

scaling between [0, 2], scaling of the input weight ma-

trix (Win) between [−1, 1], leak rate [0, 1], and the

sparseness of W [0,1]. For both random and novelty

search, at creation a reservoir has each global parame-

ter drawn from a uniform random distribution, as well

as input weights and internal weights drawn uniformly

from other ranges; Win between [−1, 1] and W between

[−0.5, 0.5].

For the evolutionary algorithm, the following MGA

parameters are selected from preliminary experiments:

population size = 200, deme = 40, recombination rate

= 1, mutation rate = 0.2, ρmin = 3, and ρmin update

= 200 generations.

To compare novelty search and the random control,

10 runs are conducted, with a limit of 2000 generations

(full loops of Fig. 3) for novelty search, and 2000 ran-

domly initialised reservoirs for random search.

Fig. 4: Average coverage (over 10 runs) of behaviour

space against number of generations. Error bars show

minimum and maximum coverage.

5.3 Results: Random Versus Novelty Search

For every ESN network size, novelty search is able to

explore a greater area of the behaviour space than the

control (random search) in the same time. The total

coverage (θ) of the behaviour space versus generations

(or database size) is shown in Fig. 4. The results show

that, with more generations novelty search can continue

to explore an even greater area than random search,

increasing linearly with the number of generations.

Fig. 5 shows all 10 runs of two network sizes (25 and

200) plotted in the behaviour space, helping visualise

the difference in coverage. Random search appears to

produce similar patterns in the behaviour space with

different network sizes. These patterns include sparse

regions that are difficult to occupy when uniformly sam-

pling the parameter space, highlighting how deceptive

the behaviour space is compared to the parameter space.

Novelty search on the other hand covers the behaviour

space more uniformly, both filling sparse regions and ex-

panding beyond the region covered by random search.

The difference in coverage between the two methods

also becomes more distinct with an increase in network

size.

Looking at Fig. 4 there appears to be a similar lin-

ear relationship between coverage (new behaviours) and

generations across all ESN network sizes. However, net-

work size affects coverage in different ways, e.g. the

rate of coverage between 100 and 200 nodes does not

increase as much between 25 and 50 nodes. To bet-

ter understand this, each experiment is replotted using

the rate r of total coverage θ per 200 generations; the

number of generations at which coverage was recorded

and calculated. For example, a rate r = 1 would in-
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(a) 25 node (b) 200 node

Fig. 5: Plot of all behaviours found through novelty search (Red, Top row) and all behaviours found through

random search (Black, Bottom row).

Fig. 6: A comparison of all experiments shown in fig. 4

when plotted as the rate (r = θ/generation).

dicate a new behaviour was found every generation,

and a rate r = 0 would show exploration halted. In

Fig. 6, we see that smaller networks find fewer novel so-

lutions per generation and larger networks maintain or

increase slightly. This is most likely a product of larger

networks having more adjustable parameters (weights).

This leads to a higher dynamical degrees of freedom

and therefore more distinct behaviours can be found

per generation, resulting in smaller networks converg-

ing faster to r = 0.

6 Representation and Predicting Performance

At this stage, we have described how to define the be-

haviour space, how to explore/map it and how to use

coverage (φ) as measure of substrate “quality”. Now

we investigate how well the behaviour space represents

computation in substrates and what relationship prop-

erties have to task performance.

Under Abstraction/Representation (A/R) theory [12],

if the reservoir representation provides a faithful ab-

stract representation of the substrate, it should be pos-

sible to predict how the reservoir states will evolve. In

the context of the CHARC framework, we expand the
A/R view, and hypothesise that if the measures of be-

havioural properties are substrate-independent and if

relationships between properties and task performance

can be learnt, then it should be possible to predict the

performance of one substrate based on another sub-

strate that exhibits similar behaviour values.

To assess whether the property measures provide a

suitable representation, here we attempt to learn and

model the relationship between properties and task per-

formance. How well this relationship can be learnt will

indicate how well the properties represent computation

within the substrate.

6.1 Prediction Tasks

The property-performance relationship across all tasks

is non-trivial. However, relationships between individ-

ual tasks and properties are sometimes simple. To pre-

dict performance, four benchmark tasks are selected
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based on dissimilar requirements of reservoir properties:

the common non-linear autoregressive moving average

(NARMA) task with a 10-th and a 30-th order time-

lag; the Santa Fe laser time-series prediction task; and

the non-linear channel equalisation (NCE).

The NARMA task evaluates a reservoir’s ability to

model an n-th order highly non-linear dynamical sys-

tem where the system state depends on the driving

input and state history. The task contains both non-

linearity and long-term dependencies created by the n-

th order time-lag. An n-th ordered NARMA task pre-

dicts the output y(n+ 1) given by Eqn. (7) when sup-

plied with u(n) from a uniform distribution of inter-

val [0, 0.5]. For the 10-th order system parameters are:

α = 0.3, β = 0.05, δ = 0.1, and γ = 1; for the 30-th

order system: α = 0.2, β = 0.004, δ = 0.001, and γ = 1.

y(t+ 1) = γ

(
αy(t) + βy(t)

(
n−1∑
i=0

y(t− i)

)

+ 1.5u(t − 9)u(t) + δ

)
(7)

The laser time-series prediction task predicts the

next value of the Santa Fe time-series Competition Data

(dataset A)2. The dataset holds original source data

recorded from a Far-Infrared-Laser in a chaotic state.

The Non-linear Channel Equalisation task introduc-

ed in [15] has benchmarked both simulated and phys-

ical reservoir systems [24]. The task reconstructs the

original i.i.d signal d(n) of a noisy non-linear wireless

communication channel, given the output u(n) of the

channel. To construct reservoir input u(n) (see Eqn. 9)

d(n) is randomly generated from −3,−1,+1,+3 and

placed through Eqn. 8:

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1) + d(n)

+ 0.18d(n− 1)− 0.1d(n− 2) (8)

+ 0.091d(n− 3)− 0.05d(n− 4)

+ 0.04d(n− 5) + 0.03d(n− 6) + 0.01d(n− 7)

u(n) = q(n) + 0.036q(n)2 − 0.011q(n)3 (9)

Following [15], the input u(n) signal is shifted +30

and the desired task output is d(t− 2).

2 Dataset available at UCI Machine Learning Reposi-
tory [33].

6.2 Experimental Set-up

At the evaluation level, the database for the reference

substrate is assessed on tasks, providing a target dataset.

To model the relationships, feed-forward neural net-

works (FFNN) of 100-neurons are configured for re-

gression, i.e., given behaviours from the novelty search

database, predict performance on a task. The inputs to

the FFNN are: MC (continuous-valued), KR and GR

(discrete values). The output of the network is task

performance (continuous-valued), recorded as the nor-

malised mean squared error (NMSE) of the reservoir

with the corresponding input behaviour.

To train the FFNN, the Levenberg-Marquardt al-

gorithm [21] is used for 1000 epochs, with the train-

ing dataset set as 70% of the data (database D), 15%

for validation and 15% set aside for testing. To gather

statistics, 20 FFNNs are trained and tested for every

test.

6.3 Prediction Results

In this section FFNNs are trained, per task and per

ESN size.

If the property measures provide a good represen-

tation of the substrate, the mean prediction error of

all trained models should be low and similar to each

other, i.e. shows a relationship is present, not too diffi-

cult to model and holds when the substrate is changed

(in this case a different size ESN). However, there will

be some deviation in error between models trained with

databases holding different behaviours, because hav-

ing a greater or smaller behavioural range can result

in an increase or decrease in complexity of the mod-

elled relationships. For example, reservoirs in the be-

haviour space around KR = GR = MC ≤ 25 tend

to have similar poor performances on the NARMA-30

task because they do not meet the minimum require-

ment (MC ≥ 30). This means the NARMA-30 task is

easier to model with the database created by the 25

node ESNs. When databases with larger ESNs are used

to model the relationship, prediction error will likely

increase.

This is not always true, for some tasks to accu-

rately model the relationship requires a greater vari-

ety of behaviours than smaller ESNs can provide (e.g.

for the non-linear channel equalisation task). Therefore,

an FFNN trained on a database provided by the 200

node ESNs will perform better than one provided by

the smaller 25 node ESNs. This is one example of where

the non-trivial problem of relating properties to perfor-

mance presents itself.
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(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Fig. 7: Mean performance of 20 FFNNs trained and tested on each database (different sized ESN), per task .
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In Fig. 7, the results of all FFNNs trained on differ-

ent tasks and databases are shown as heat maps. The

mean test error (either root mean square error RMSE

or mean absolute error MAE ) of FFNNs trained and

tested using the same database are given along the di-

agonal, where train ESN size y = test ESN size x. When

focusing on these results, we tend to see a small devia-

tion between model accuracies, however there are some

exceptions, as previously discussed.

Also shown in Fig. 7 is how well the FFNNs pre-

dict the task performance of reservoirs from different

databases, i.e. when train ESN size y 6= test ESN size

x. The generalisation to other databases, holding possi-

bly new behaviours, varies depending again on the task.

In general, if train y ≥ test x, the FFNNs mean pre-

diction error is usually greater than the original, but

considerably less than train y ≤ test x.

The most likely cause of the first case, when train

y ≥ test x, is a loss in granularity of the learnt relation-

ships between databases. Stretching the same number

of data-points to a larger area will result in fewer exam-

ples to learn from in each region of the behaviour space,

i.e., a loss in resolution that might be important to the

learnt problem. This can be thought of as a sampling

bias or quantisation effect. The second case is simply

a result of new behaviours predicted based on no prior

data, resulting in a poor prediction.

Overall, the mean prediction errors appear consis-

tent, with small deviations as the behaviour range in-

creases or decreases. This would suggest the behaviour

space and property measures are a somewhat faithful

representation of the substrate’s computational capa-

bilities.

7 Completing the Framework

At this stage, the framework definition is almost com-

plete. The hypothesis so far is that the behaviour space

of the substrate can be explored and quality can be

measured with a faithful representation of the substrates

computational mechanisms.

The final part of the framework is: i) to apply each

level to a new uncharacterised substrate, ii) to evalu-

ate quality w.r.t. the reference substrate, iii) to use the

predictive network from section 6 to predict task per-

formance, and iv) to use the prediction to validate the

substrate-independence of the behaviour space.

The substrate that is used to demonstrate this part

of the framework is the physical substrate investigated

in [4,5,6]. The substrate comprises a carbon nanotube–

polymer composite, forming random networks of semi-

conducting nanotubes suspended in a insulating poly-

mer, deposited onto a micro-electrode array.

In previous work [4], a small amount of characteri-

sation has been done showing that even the best sub-

strate (1% concentration of carbon nanotubes w.r.t.

weight mixed with poly-butyl-methacrylate) typically

exhibits low memory capacity, despite different meth-

ods of configuration. This leads to overall modest per-

formances, but encouraging when compared relative to

size, on benchmark tasks such as NARMA-10 [4] and

the Santa Fe laser time-series prediction task [5].

The challenging aspect of characterising this black-

box substrate is due to its disordered structure and self-

organisation during the fabrication process, making it

impractical (or even impossible for the general case) to

model internal workings. Originally, the CNT/polymer

was proposed as a sandpit substrate to discover whether

computer-controlled evolution could exploit a rich source

of physical complexity to solve computational prob-

lems [2]. Due to its computational shortcomings, it pro-

vides a challenging substrate for the CHARC frame-

work and is useful for demonstrating the process.

The training and evaluation of the substrate is con-

ducted on a digital computer. Inputs and representative

reservoir states of the substrate are supplied as voltage

signals. The adaptable parameters for evolution are the

number of input-outputs, input signal gain (equivalent

to input weights), a set of static configuration voltages

(values and location), and location of any ground con-

nections. Configuration voltages act as local or global

biases, perturbing the substrate into a dynamical state

that conditions the task input signal.

An advantage of physical substrate-based reservoirs

is that computational speed of a trained reservoir is lim-

ited only by interface hardware and physical response

time, which can potentially be all analogue. However,

the training process can take considerably longer as

multiple runs for statistical tests are often needed. With

this substrate in particular, there are many unstable

configurations. Therefore, extra evaluations are required

to measure statistical stability in order to discard un-

stable signals from the training process. For this reason

alone, the ability to predict performance across sub-

strates and bypass the task training process would be

decidedly beneficial.

7.1 Experimental Parameters

The same GA/NS parameters applied to the virtual

ESN substrate are reused with the physical substrate.

These are: generations limited to 2,000; population size

= 200; deme = 40; recombination rate = 1; mutation

rate = 0.2; ρmin = 3; and ρmin update = 200 genera-

tions. Five runs are conducted here, as the time to train

increases significantly.
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Fig. 8: Hardware Reservoir System. Micro-electrode

housing, routing switch board and CNT/polymer de-

posited onto PCB electrode array.

In this work, a 1% carbon nanotube poly-butyl-

methacrylate (CNT/PBMA) mixture substrate is in-

vestigated. The substrate was mixed and drop cast onto

a micro-electrode array using the same process in [4,5,

6]. The electrode array applied here comprises 64 elec-

trodes (contact sizes of 100µm and spacings of 600µm

between contacts) deposited onto a FR-4 PCB using a

chemical process that places Nickel and then a layer of

Gold (see Fig. 8).

Two National Instruments DAQ cards perform mea-

surements and output analogue voltages; a PCI-6225

(16-Bit, 250 KS/s, with 80 analogue inputs), and PCI-

6723 (13-Bit, 800KS/s, with 32 analogue outputs). Both

cards communicate to a desktop PC through a session-

based interface in MATLAB. The PCI-6723 supplies

an additional 8 digital I/O lines to a custom routing

board to program on-board switches and synchronise

the cards.

7.2 Quality of Physical Substrate

The results of the evolved physical substrate suggest

a poorer quality and a limited dynamical degrees-of-

freedom compared to the reference ESN substrate. This

is in agreement with previous work comparing the phys-

ical substrate to ESNs in [4,5,6].

When overlaying the explored behaviour space of

the physical substrate on top of the reference substrate

the difference becomes distinct (see Fig. 9). The average

coverage of the physical substrate in Fig. 10b is only a

third of even the 25 node ESN experiment.

The effective number of equivalent nodes an ESN

should possess to compare fairly to this physical sub-

strate is unknown. As a rough guide, the physical sub-

strate has up to 64 state observations at any one time,

therefore it might be considered generous to compare it

to a 25 node ESN, however, this assumes similar non-

linear nodes, network dynamics, connectivity, etc.

In general, the search struggles to find configura-

tions beyond a memory capacity of 5, reaching what

appears to be a memory capacity limit. The bounds on

the ranks are also small given only a small number of

inputs are typically in use. This would suggest the sub-

strate struggles to exhibit enough (stable) non-linear

behaviour to create a strong non-linear projection, and

effectively store recent input and state information.

To investigate if the substrate limits are reached,

random search is also conducted (Fig. 10) and the nov-

elty rate is plotted (Fig. 11).

When comparing random search to novelty search in

Fig. 10b, novelty search on average appears to explore

slightly faster and further for roughly 1200 generations

but then begins to plateau around θ = 360.

Looking at the novelty rate of the physical substrate

(Fig. 11), we see that the rate of new behaviours drops

considerably over the course of the evolutionary runs.

For random search this drops faster, then novelty search

reaches the same low novelty rate after 1600 genera-

tions, maintaining the same decrease in novelty rate as

random.

Fig. 11 also shows how the physical substrate com-

pares to different ESN sizes. The physical substrates

rate r starts much lower, around r = 0.5 compared

to the ESNs (r ≥ 0.8). This itself begins to suggest

the physical substrate has a small degree of dynamical

freedom, as less than half of the 200 original random

behaviours were unique.

The rate r for both random and novelty search then

both decrease at a similar rate, however, this is not the

case for the ESNs. Although both decrease as the be-

haviour space is explored/filled, the difference in r grad-

ually increases, with random typically dropping early

and continuing to get smaller.

This small difference in r across the generations,

combined with a low starting and low finishing r, plus a

struggle to find unique behaviours (Fig. 10a), suggests

the physical substrate’s dynamical limits have almost

been reached. Although this shows the substrates are

limited for reservoir computing, it more importantly

demonstrates that the framework can approximate and

quantify the dynamical boundaries of the substrate.
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(a) 25 Node ESN

(b) 100 Node ESN

Fig. 9: Carbon nanotube composite behaviour space (Red) superimposed on ESN behaviour space (Black)

(a) Behaviour space comparison (b) Total coverage comparison

Fig. 10: Physical substrate: a) novelty search (red) versus random search (black) in the behaviour space, b) and

for total coverage.

7.3 Prediction transfer

At the Application level of the framework, we try to pre-

dict the task performance of another similarly behaved

substrate based on models of the reference substrate.

To do this, all the FFNNs from the learning level

(section 6) are used to predict the performance of the

carbon nanotube composite. Then, using the difference

∆ between prediction errors of both substrates we mea-

sure how accurately the modelled relationships trans-

late across substrates.

The measure ∆ represents the difference between

the trained ESN substrates mean test error and new

physical substrates mean test error. To support the hy-



A Substrate-Independent Framework to Characterise Reservoir Computers 15

Fig. 11: The novelty rate (r = θ/generation) of the

physical substrate and compared with different ESN

sizes.

pothesis that the behaviour space and the property

measures have substrate independence, a low ∆ close

to zero is desired.

Prior to the prediction tests, the databases created

from five runs are assessed on the four tasks, creating a

five test sets per task for the physical substrate. This is

done here for evaluation purposes only, if the framework

is found to be substrate-independent the task evalua-

tion step on the physical substrate can be ignored.

The mean prediction error of all FFNNs, trained

with different size ESNs and tested on the substrate for

all four tasks, are given in Fig. 12. The first column in

each grid provides the test error of the FFNNs when

predicting the physical substrates task performance.

On every task except non-linear channel equalisa-

tion, the FFNNs predict the task errors of the physi-
cal substrate almost as well as an FFNN trained and

tested with the same ESN size. As seen in Fig. 12d, the

FFNNs trained to predict the non-linear channel equal-

isation task struggle to accurately translate the learnt

relationships to the physical substrate. Although the

prediction error is worse than if trained and tested on

the same size ESN, the error is considerably lower than

if an FFNN was trained using a small ESN size then

tested on a larger ESN size.

Another interesting result is that, in some cases, the

FFNN trained with the 200 node ESN more accurately

predicts the performance of the physical substrate than

a FFNN trained with a smaller sized ESN. This is some-

what counter-intuitive because an FFNN trained with

a 200 node ESN has fewer examples in the behaviour

space occupied by the physical substrate, i.e. in the re-

gion within KR = GR = MC ≤ 25, thus would likely

over-generalise/under-fit this region, as it does when

tested with the 25 node ESN.

All these trends are summarised in the∆ plot, Fig. 13.

The average ∆ (in units RMSE or MAE) is given for

each task and for all FFNNs (20 per ESN size), applied

to the physical substrate. For the first three tasks, small

∆’s close to zero are present in most cases, despite ESN

size. However, as before, ∆ increases significantly for

the non-linear channel equalisation task.

The reasons why the modelled relationships of the

non-linear channel equalisation task struggle to trans-

late across substrates is still unknown and requires fur-

ther investigation. However, a potential lead to explain-

ing this is that the variation in performance across the

behaviour space is very low, with reservoirs requiring

very low metric values to perform well at this task.

Therefore, the greater variation seen with the physical

substrate is likely to be poorly modelled by the FFNNs

trained with larger ESNs.

Overall, the results in this section indicate that the

CHARC framework has a good level of substrate inde-

pendence and that the behaviour space can accurately

represent the substrate’s computational properties. It

also highlights again the non-trivial nature of the task–

property relationship and how some tasks can be more

difficult to model, or require extra thought and manip-

ulation, than others.

These last results also show that the learning phase

(and task evaluation) only needs to be performed with

the reference substrate, once per task, leading to a sig-

nificant reduction in time to evaluate and test new sub-

strates on specific tasks. For example, one could eval-

uate the reference substrate’s database on a new task,

train an FFNN, then predict whether a previously ex-

plored physical substrate would be suitable, perform

well on the task, or even what the best configuration

would be, without having to test directly on the sub-

strate. In the future, the learning phase may even be

a shared venture, stored and shared in a repository for

reference substrates, helping other practitioners quickly

evaluate new substrates and their suitability for specific

tasks.

8 Conclusion

A fundamental question in reservoir computing is: for a

given task, what characteristics of a dynamical system

or substrate are crucial for meaningful information pro-

cessing? The CHARC framework tackles this question

by focussing on the substrate rather than the specific

task. In the process, solutions to two non-trivial prob-

lems are proposed; (i) how to characterise the quality

of any substrate for reservoir computing; and (ii) how

do computational properties relate to performance.
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(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Fig. 12: FFNN prediction errors of all trained and tested ESNs, and tested on physical substrate.
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Fig. 13: The average difference ∆ between prediction errors for ESNs trained/tested using same size and physical

substrate, across the four tasks: T1 = NARMA-10, T2 = NARMA-30, T3= Laser, T4= Non-linear channel

equalisation.).
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(a) Phase 1 – Reference Substrate

Behaviour space

Novelty search Database

Quality
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Exploration & Mapping

Application

(b) Phase 2 – Test Substrate

Fig. 14: Framework summary. a) Reference substrate mapped providing a reference quality and learnt relationships

to predict performance. b) Test substrate is assessed for quality. No task assessment is necessary and learning phase

is skipped. Performance of test substrate is predicted using learnt relationships from reference.

To fully utilise the framework, two phases must be

completed. In the first phase (Fig. 14a), the lower lev-

els of the framework are applied to the reference sub-

strate, providing context to future quality measures on

other substrates. Then the upper levels are applied to

learn the transferable relationships between substrate

behaviours and task performance, helping validate the

framework and predicting performances of similarly be-

haved substrates. The second phase applies a reduced

set of levels (Fig. 14b) to a new substrate for which

a measure of quality is desired. The phase one learnt

transferable relationships can be used to predict how

well the second substrate could perform a task, with-

out it having to be assessed directly on the task.

Throughout this work, each level of the framework

has been described and tested. In some cases, adapta-

tions and the removal of different levels/building blocks

have also been discussed. This demonstrates both the

flexibility and potential power of the framework where

building blocks can be changed, integrating new tech-

niques or measures not currently available.

What was learnt whilst using the framework is that

substrate limitations can be outlined (section 77.2). This

helps explain why the carbon nanotube composite strug-

gles to compete with echo state networks in previous

work [4,5].

Another feature highlighted is the non-trivial prob-

lem of relating properties to task performance (section

66.3), suggesting current measures of dynamical proper-

ties provide only a partial view of the full characteristics

of reservoir systems. Therefore, in order to fully under-

stand these systems we need to explore each property

and its’ relationship to others.

The CHARC framework provides a basic methodol-

ogy to compare and evaluate any substrate for reservoir

computing; something not achieved or widely discussed

in the reservoir computing community. The advantage

of having such a framework can only be speculated, but

any method to compare systems, or even techniques
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for perturbing or observing systems, has the chance to

rapidly improve the design and implementation process.

It potentially opens the reservoir computing field to a

wider audience where new interesting unconventional

computing substrates could appear, and even provides

a goal for optimisation of current substrates.
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