

Experiences of Structured Elicitation for Cost-Effectiveness Analyses

Marta Soares, Centre for Health Economics, University of York

LSHTM, 29 June 2018

Marta O. Soares, PhD^{1,*}, Linda Sharples, PhD², Alec Morton, PhD³, Karl Claxton, PhD^{1,4}, Laura Boike, PhD¹

¹Centre for Health Economics, University of York, York, UK; ²Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, UK; ³Management Science, University of Strathclyde, Glasgow, UK; ⁴Department of Economics, University of York, York, UK

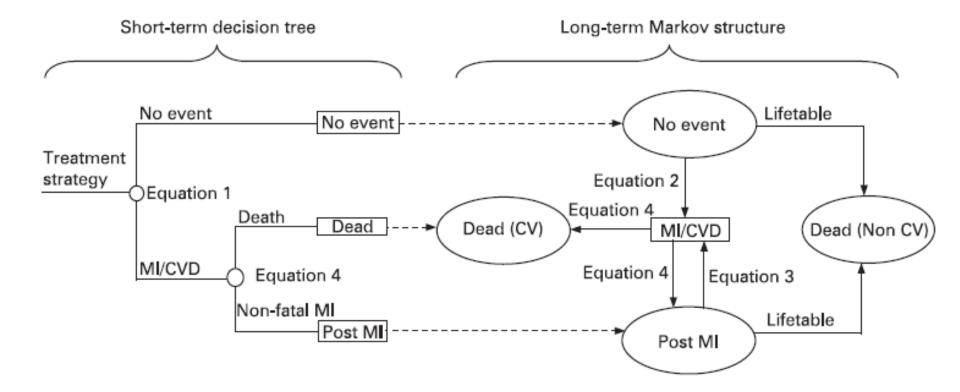
What is expert elicitation?

"systematic process of formalizing and quantifying, typically in probabilistic terms, expert judgments about uncertain quantities" [White paper on elicitation]

- Bayesian inference (subjective priors).
- Used formally in support of decision making in other areas of science: e.g. food safety. [EFSA]
- Uncertainty reflects degree of belief over an uncertain quantity, i.e. imperfect knowledge (epistemic uncertainty)
- Good elicitation (structured expert elicitation, SEE) should minimise bias and heuristics

But inevitably, the probabilities elicited are personal

What is decision modelling for health care decision making?

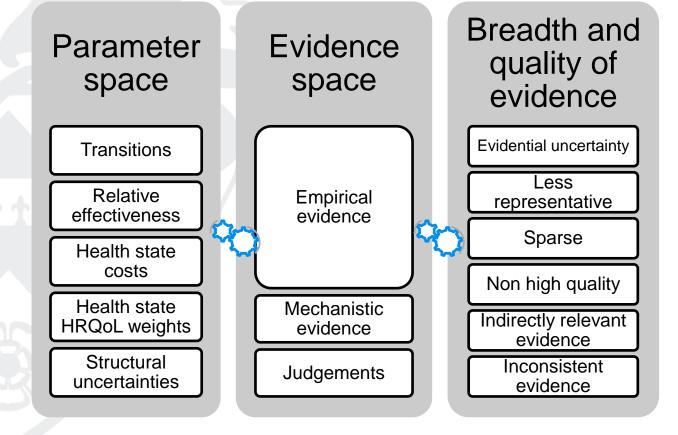


- Health systems need to make a number of decisions on health care resources: which, whom, when, where...
 - O Typical example is reimbursement/access (NICE)
 - O Other examples: individual funding requests (NHS England)
- Decisions informed by HTA including cost-effectiveness, the latter comparing interventions in terms of:
 - O long-term effects on population health (typically measured in QALYs), and
 - O overall cost implications for relevant stakeholders or individuals.
- Evaluations are often model-based, where evidence from multiple sources and on multiple aspects of disease and treatment are considered together, and the model used to extrapolate to the long term.
- Uncertainty in the evidence can result in uncertain cost-effectiveness estimates.

Decision modelling

State transition models

CHE


Centre For Health Economics

Decision modelling

Decision modelling and decision making

- Which intervention is worthwhile using
 - Based on expected values
 - Rejecting an intervention that is expected to be beneficial on the grounds of uncertainty solely is not ethically justified

• Under uncertainty, further timely research may be needed

- To reverse initial guidance is proven wrong
- Avoid the consequences of uncertainty

 Approval/rejection can be conditioned on research being conducted

Uses for elicitation in CE modelling

Uncertainty is pervasive in CE modelling

- O SEE can help characterise it
- Judgements are ALWAYS required for a decision to be reached
 - O SEE can contribute to accountability
- Increased interest in SEE with decisions closer to launch and increased use of 'early modelling'.
- Possible uses of elicitation in HTA:
 - Initial estimates where empirical data is absent [refs]
 - weights for alternative structural assumptions (model averaging)
 - weights for bias correction (observational evidence)
 - o between trial heterogeneity in (network) meta analysis
 - o sample size calculations
 - 0

How to conduct an elicitation and motivation for further work

 An elicitation exercise requires a number of decisions on aspects of its design, conduct and analysis.

- Little research to support the choices that need to be made.
 - Accuracy cannot be measured as expert beliefs are inherently unobservable
 - Existing methodological research: noncommittal, inconsistent, poor quality...
- Methodological uncertainties may be main reason for the limited use of SEE in the context of HTA.
- There are no protocols (guides to good practice) in HTA, but there are generic ones, e.g.:
 - Sheffield elicitation framework (SHELF)
 - Cooke's classical method (Cooke R.M 1991)
- Not clear if any can appropriately be used to inform health care decisions

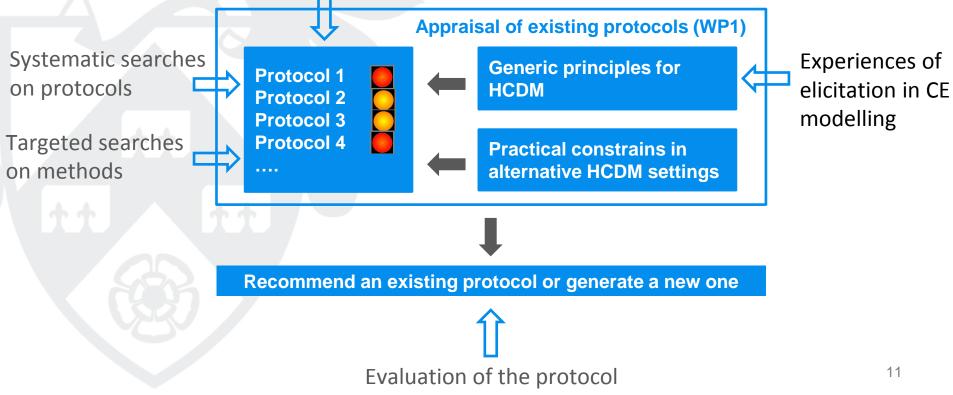
MRC work

Developing a reference protocol for expert elicitation in health care decision making

Bojke L, Claxton K, Fox A, Jankovic D, Soares M (U of York), Taylor A (U of Leeds), Sharples L (LSHTM), Jackson C (U of Cambridge), Morton A, Colson A (U of Strathclyde)

Timeline: 11.2017 – 03.2019

Workplan for MRC work


Experiments (WP2,3)

- Comparison of two methods to elicit distributions (parameter uncertainty)
- Can individuals elicit accurately when their knowledge-base is different to target quantity? ٠

UNIVERSITY

Centre For Health Econor

How do individuals revise their estimates in Delphi-type processes?

HCDM: Health Care Decision Making

- An update of a previous review [Grigore 2013] was conducted to identify applied SEEs (eliciting uncertainty) in costeffectiveness modelling
- Main aims:
 - summarise the basis for methodological choices made in each application
 - record the difficulties and challenges reported by the authors in the design, conduct, and analyses.

Study	Type of strategy under investigation	Study	Type of strategy under investigation
Garthwaite et al.	Treatment	Colbourn et al. [28]	Diagnostic/screening
[14]		Soares et al. [9]	Treatment
Leal et al. [10]	Diagnostic/screening	Bojke et al. [18]	Treatment
neur et un [10]	Diagnostic, screening	Cao et al. [11]	Diagnostic/screening
Cirling at al. [15]	Treatment	Fischer et al. [23]	Treatment
Girling et al. [15]	Prevents transmission	Poncet et al. [27]	Diagnostic/screening
Stevenson et al. [16]	Prevents transmission	Grigore et al. [24]	Treatment
		Wilson et al. [20]	Treatment
Meads et al. [12]	Diagnostic/screening	Meeyai et al. [21]	Vaccine
		Grimm et al. [35]	Diagnostic/screening
McKenna et al. [19]	Treatment	R&D, research and d	qualanment
Haakma et al. [13]	Diagnostic/screening	-	ation in clinical practice over time.
Stevenson et al. [17]	Treatment	· kate of implementa	tion in chincal practice over time.
Speight et al. [25]	Diagnostic/screening		
Sperber et al. [22]	Treatment		
Brodtkorb [26]	Several exercises conducted		

The paper focussed on:

- Aspects related to the design
 - Specification of the quantities to elicit
 - Selection of experts
 - Elicitation method
 - Consensus vs. mathematical aggregation, weighting of experts
- Experiences with the conduct of the exercise
- Experiences with the analyses and interpretation
 - Considerations on validity
 - Synthesis of multiple beliefs in mathematical aggregation
 - Deriving smooth prior distribution functions
 - Further use of elicited evidence in decision modelling
- Considerations on bias

Today, I will focus on:

- Aspects related to the design
 - Specification of the quantities to elicit
 - Selection of experts
 - Elicitation method
 - Consensus vs. mathematical aggregation, weighting of experts
- Experiences with the conduct of the exercise
- Experiences with the analyses and interpretation
 - Considerations on validity
 - Synthesis of multiple beliefs in mathematical aggregation
 - Deriving smooth prior distribution functions
 - Further use of elicited evidence in decision modelling
- Considerations on bias

Centre For Health Econon

- Several quantities can often be used to inform a parameter.
 - For a probability-related parameter, alternative quantities elicited may be:

Alternative quantities to inform	Mathematical specification*	
probability-related parameters		
Probability, or conditional probability	P[D=1] or P[D=1 A]	
Odds	P[D=1]/(1-P[D=1])	
Transition probability	$P[D_{c+1}=1 D_{c}=0] = P[c$	
Survival probability	$S(t) = P[D_t=1] = P[T>t]$	
Time to event summaries	e.g. mean or median time to event	
Rates or hazards	h(t)	
Parameters of the hazard function	e.g. Weibull(shape, scale)	

Centre For Health Econor

• Several quantities can often be used to inform a parameter.

 For a probability-related parameter, alternative quantities elicited have been:

Alternative quantities to inform	Mathematical specification*	
probability-related parameters		
Probability, or conditional probability	P[D=1] or P[D=1 A]	
Odds	P[D=1]/(1-P[D=1])	
Transition probability	$P[D_{c+1}=1 D_{c}=0] = P[c$	
Survival probability	$S(t) = P[D_t=1] = P[T>t]$	
Time to event summaries	e.g. mean or median time to event	
Rates or hazards	h(t)	
Parameters of the hazard function	e.g. Weibull(shape, scale)	

Centre For Health Economics

Considerations when choosing quantities to elicit

- Appropriateness for experts
 - o observable rather than unobservable quantities [Kadane 1998]
 - Relative effectiveness parameters expressed as probabilities [9–12]
 - Sensitivities and specificities into probabilities of the true disease status of the patients conditional on the test results [12].
 - Different experts elicit different quantities
 - geneticists elicited accuracy of a genetic test and cardiologists elicited parameters related to disease progression [10]
 - o Heterogeneity
 - elicit separately for population subgroups [12,13]

Specification of the quantities to elicit

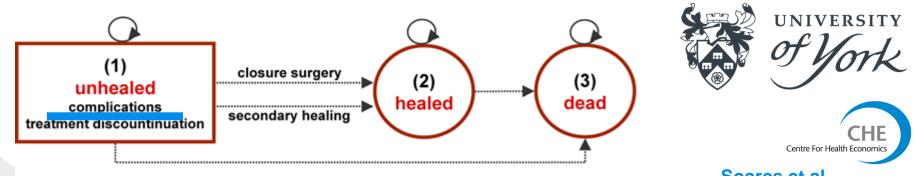
Centre For Healt

- Fit for purpose and allow combining with existing empirical evidence [9].
 - e.g. time dependency
- Coherence between quantities
 - e.g. elicit multinomial events using conditional binomials
- Dependencies
 - Avoid dependencies between quantities elicited, e.g. re-expressing parameters using conditional independence [9,13].
 - Two studies explicitly elicited dependency [14,18]

Centre For Health

- Limit number of target parameters to elicit
- Elicit homogeneous quantities throughout (e.g. probabilities)
- Use filter questions (e.g. do you think X differs from Y?)
- Avoid dependency elicitation
 - Elicit only for covariate indicated as relevant by the expert

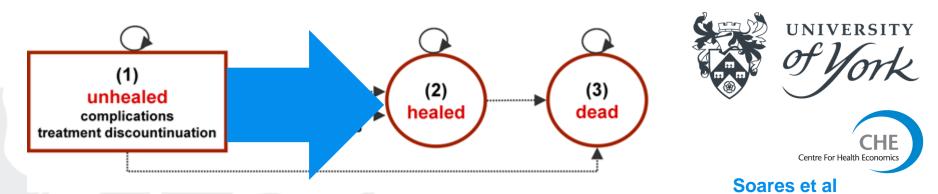
UNIVERSITY


Garthwaite et al

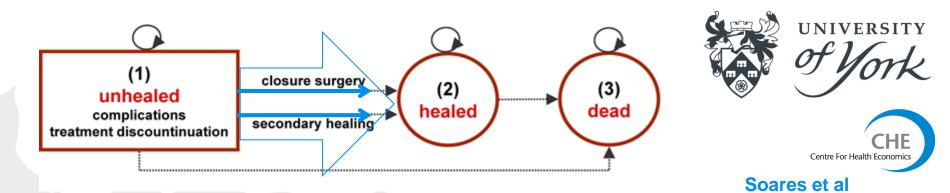
Questions elicited Re-structured tree (a) What proportion of patients referred for investigation of symptoms of bowel cancer do Barium not undergo diagnostic testing (i.e., go straight d enema to surgical intervention)? Colonoscopy (b) What proportion of the patients referred No barium undergo endoscopy (flexible sigmoidoscopy or enema colonoscopy) as their first investigation rather Endoscopy than a radiological scan (barium enema, colonography)? e) Colonoscopy Flexible b) (c) Of those patients undergoing endoscopy, sigmoidoscopy what proportion undergo colonoscopy as their Diagnosti No first investigation? c Tests colonoscopy (d) Of those patients undergoing colonoscopy, what proportion then have a barium enema? Barium enema f) (e) Of those patients who undergo flexible Radiological sigmoidoscopy, what proportion then have a scan (a) colonoscopy? Other diagnostic No (f) Of those patients undergoing a radiological diagnostic test scan, what proportion undergo a barium tests enema as their first investigation?

(1) unhealed complications treatment discountinuation	UNIVERSITY OF VORK Correction of the second
Q1: Think of unhealed patients in the UK. 6 months after starting treatment with X what % of patients who are alive do you think would	P[S ₆ =healed S ₀ =unhealed] (survival)

have a healed reference ulcer?



Soares et al


Q1: Think of unhealed patients in the UK. 6 months after starting treatment with X what % of patients who are alive do you think would	P[S ₆ =healed S ₀ =unhealed] (survival)
have a healed reference ulcer?	
Q2: Now think of those patients who are still unhealed after 6	P[S ₆ =complications S ₆ =not
months. At this 6 month point, what % of these unhealed patients do	healed, S_0 =unhealed]
you think would have complications?	(conditional probability)

tt tt Store the second se

Time dependency

Q1: Think of unhealed patients in the UK. 6 months after starting treatment with X what % of patients who are alive do you think would	P[S ₆ =healed S ₀ =unhealed] (survival)
have a healed reference ulcer?	
Q2: Now think of those patients who are still unhealed after 6 months. At this 6 month point, what % of these unhealed patients do you think would have complications?	P[S ₆ =complications S ₆ =not healed _, S ₀ =unhealed] (conditional probability)
Q3 : Think of those patients who are still unhealed after 6 months. What % do you think would heal their reference ulcer between 6 and 12 months?	P[S ₁₂ =healed S ₆ =unhealed, S ₀ =unhealed] (survival, conditional)

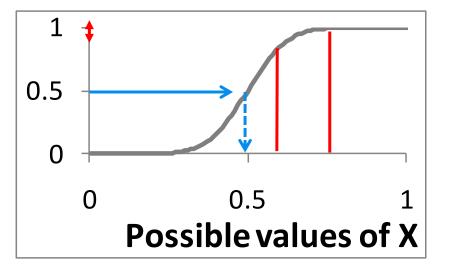
Q1: Think of unhealed patients in the UK. 6 months after starting treatment with <i>X</i> what % of patients who are alive do you think would have a healed reference ulcer?	P[H] (survival)
Q2: Now think of those patients who are still unhealed after 6 months. At this 6 month point, what % of these unhealed patients do you think would have complications?	$P[S_6=complications S_6=not healed, S_0=unhealed]$ (conditional probability)
Q3 : Think of those patients who are still unhealed after 6 months. What % do you think would heal their reference ulcer between 6 and 12 months?	$P[S_{12}=healed S_6=unhealed, S_0=unhealed]$ (conditional survival)
Q4 : Think of patients that had their pressure ulcer healed completely at some point. What % of these patients achieved healing as a direct result of closure surgery?	P[S H] (conditional probability)
Q5: Consider patients with an ulcer on which closure surgery has been performed. What % of patients who received this surgery do you think will have healed 1 month post-surgery?	P[H S] (conditional probability)

$$P[S] = \frac{P[S|H] \cdot P[H]}{P[H|S]}$$

Experiences of elicitation in CE: Selection of experts

- Not much known about who constitutes a good expert
- Desirable skills: substantive, normative, adaptive
- All applications recruited health professionals. Criteria were:
 - O recognition by peers [10],
 - specialist knowledge or clinical experience [9,10,13,18,19,22,23],
 - O based in the relevant jurisdiction [9,10,18,19],
 - O research experience [10,22,23], and
 - O lack of involvement in product development [13].
 - In early technology assessment, applications have also looked for other factors such as interaction with colleagues, seen as indicative of the adaptive skills required in this context.
- health care professionals unlikely to have knowledge of elicitation and may have only sparse quantitative skills [9,14,24]

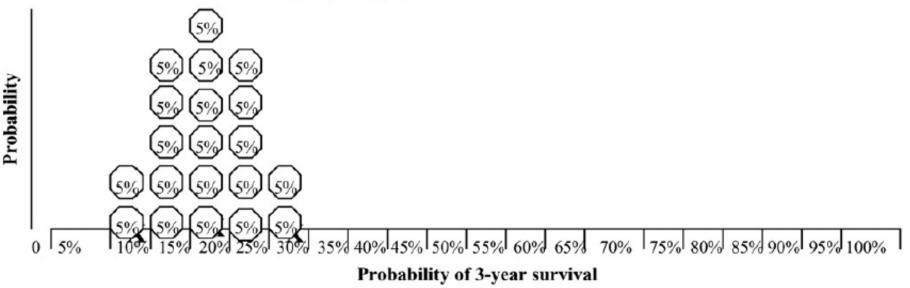
Experiences of elicitation in CE: Selection of experts


• Multiple experts better than one, but how many?

- Applications included a varied sample of experts: from a range of relevant specialties [10,12,20], clinical settings [9,10,20], and geographical areas/countries [10,23]
 - capture heterogeneity in beliefs (reflecting underlying heterogeneity in patient populations) and avoid dependency between experts [10].
- Sampling was purposeful:
 - collaborators in the research, recommendation [10,14,18], professional associations [24], specialist conferences [15,23].
- Sample sizes: 2 [11] 23 [9]

- Only a small number of summaries can be elicited
- Approaches based on probabilities:
 - variable interval methods
 The facilitator specifies a probability, p, and asks the expert
 for a value x such that P[X ≤ x]=p

- o fixed interval methods
 - The facilitator specifies a value of the random variable (or an interval of values) and asks the expert for how much of the probability, p, should be allocated P[X ≤ x]=p
- Performance of the alternative methods unclear


- Example of a variable interval method: Bisection (quartiles) [O'Hagan 2006]
 - 1. Can you determine a value (median) such that X is equally likely to be lessthan or greater than this point? $P[X \le x_1] = 0.5$
 - 2. Suppose you were told that X is below your assessed median. Can you now determine a new value (lower quartile) such that it is equally likely that X is less than or greater than this value? P[X≤x₂]= 0.25
 - 3. Suppose you were told that X is above your assessed median. Can you now determine a new value (upper quartile) such that it is equally likely that X is less than or greater than this value? $P[X \le x_3] = 0.75$

Example of a fixed interval method: chips and bins

You have been given 20 stickers. Each sticker represents 5% probability. Placing the stickers in the intervals, indicate the weight of belief for your survival estimates.

- 8 used VIMs[13,14,17,21–23,28]: Quartiles or credible intervals
- 9 used FIM [9–12,18,19,24–27]: chips and bins and 4 complementary intervals
- 3 did not report method
- No clear guidance on how to choose between methods
 - Four application pilot different methods (find contradictory results)
 - Others justify choice on:
 - citations of generic methods research,
 - previous use in CE modelling, and
 - claims of lower burden or intuitiveness for experts (chips and bins)

UNIVERSIT

Centre For Healt

Consensus vs mathematical aggregation

- Different approaches
 - Consensus where synthesis is implicit
 - Delphi type processes implicit synthesis with controlled interaction, based on rounds of individual revision after group summaries are presented
 - Mathematical where synthesis is explicit (methods used can influence results)

UNIVERSI

Centre For Health

Consensus vs mathematical aggregation

[Montebellier 2018, Elicitation: Science and art of structuring judgement, Springer]

- Benefits of group interaction
 - Error checking, Motivation, pooling of information and perspectives
- Biases associated with group interaction
 - Groups may increase or attenuate individual biases
 - Group biases:
 - false consensus,
 - groupthink,
 - polarization,
 - escalation of commitment,
 - overconfidence (particularly where task is complex)
 - Facilitation or Delphi may alleviate group biases

Consensus vs mathematical aggregation

- Centre For Health Economics
- 14 studies [9-14,18,19,22-24,27,28,35] elicited individually,
- 3 aimed to achieve consensus among experts [15,17,21],
- 3 did not explicitly report the method [16,20,25].
- Choice of mathematical:
 - desirability to reflect variation within and between experts [12],
 - consensus leads to overconfident results (i.e., narrow distributions) [10]
 - difficult to convene experts and provide experienced facilitation.
 - In one pilot study [9] consensus produced incoherent probability statements (median time to healing > time taken for 70% of patients to heal).

Consensus vs mathematical aggregation

Between expert variation

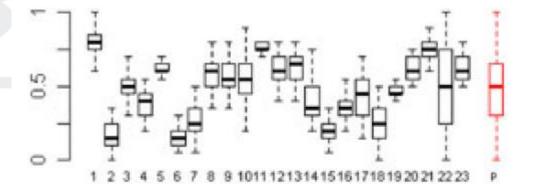


TABLE 6 Mean and standard deviation (SD) of the elicited values for each expert separately, and linearly pooled results across experts

	Mean probability of s	Mean probability of sustaining year I QoL benefits in subsequent years ^a (SD)		
	Year 2	Year 3	Year 4+	
Expert I	0.670 (0.091)	0.600 (0.082)	0.526 (0.088)	
Expert 2	0.807 (0.047)	0.886 (0.052)	0.886 (0.052)	
Expert 3	0.785 (0.039)	0.700 (0.057)	0.675 (0.075)	
Expert 4	0.605 (0.104)	0.605 (0.104)	0.605 (0.104)	
Expert 5	0.908 (0.036)	0.905 (0.035)	0.898 (0.043)	
Pooled result	0.757 (0.126)	0.742 (0.150)	0.719 (0.168)	

McKenna et al

Soares et al

UNIVERSITY

Centre For Health Econor

a Conditional on sustaining benefits in the previous year and receiving top-up procedures as considered appropriate.

35

Experiences of elicitation in CE: Conclusions

- Across applied examples:
 - o Elicitation conducted mostly when evidence is absent
 - Generally poor reporting of methods
 - Lack of homogeneity in methodology

Experiences of elicitation in CE: Conclusions

- Critical aspects for HTA
 - o Judgements required on a large number of parameters
 - Substantive experts are not expected to have very strong quantitative skills
 - Between-expert variation is warranted and expected due to heterogeneity
 - Decision makers seek for assurance on validity
 - Little integration with behavioural psychology research

Experiences of elicitation in CE: Conclusions

- SEE is essential for accountable decision making
- Methodological guidance is needed now!
 - Homogeneity in methods across appraisals
 - Reflect specificities of HTA
 - Flexible to accommodate constraints of the decision making context
 - For example, in early assessment it is desirable for experts to have (or be trained in) adaptive skills
 - Decision making context: e.g. budget, timelines
- Further methodological research is important
 - Integration with behavioural research -- debiasing techniques
 - Define best practice in elicitation
 - Particularly for the less normative experts

Thanks!

Marta Soares, Centre for Health Economics, University of York

LSHTM, 29 June 2018