The Challenges and opportunities for the characterisation and quantification of Stochastic Electromagnetic Fields

Presented by Dave Thomas Co-workers : C Smartt and M H Baharuddin, G Gradoni, S Creagh and G Tanner The George Green Institute for Electromagnetics Research Department of Electrical and Electronic Engineering The University of Nottingham, UK Dave.thomas@nottingham.ac.uk

IEEE Spectrum Sep 2015

C

UNITED KINGDOM · CHINA · MALAYSIA

Characterisation of the near field EM environment in electronic equipment

- Interoperability
- New paradigm of C2C communications

- Society requires more and more functionality in electronic devices increasing their complexity
- Many complex electronics and integrated circuits radiate essentially random noise rather than continuous stationary signals.
- State of the art standards and EMI analysis techniques do not address this.

Wireless C2C communications

- metal interconnects are deficient due to high latency and significant power consumption
- replace multihop wired interconnects with high-bandwidth single-hop long-range millimeter (mm)-wave wireless links.

• Wireless C2C communications

UNITED KINGDOM · CHINA · MALAYSIA

The problem addressed

COST IC1407 ACCREDIT

Advanced Characterisation and Classification of Radiated Emissions in Densely Integrated Technologies

TU Delft

University of Niš

UNITED KINGDOM · CHINA · MALAYSIA

GGIEMR

COST 1407 ACCREDIT

Through a series of networking activities it will provide coherent solutions and full understanding of the opportunities and relative merit of the international and inter-sectoral work on *stochastic* emissions.

Wireless near field chip to chip communications requires a better understanding and characterisation of the noisy near field environment

Direct modelling or Equivalent methods

3D EM simulation of mixed analog / digital PCB

modeling	running	memory
time	time	required
1 week	10 h	3 GB

Difficulties

- unrealistic computational resources and time due to increasingly complex circuit structure
- unknown characteristics of the circuit
- confidential reasons

Popular technique for providing EM fields closely surrounding DUTs

Correlation spectrum

$$\Gamma_{H}(x_{1}, x_{2}, \omega) = \int_{-\infty}^{\infty} c_{h}(x_{1}, x_{2}, \tau) e^{-j\omega\tau} d\tau = \lim_{T \to \infty} \frac{1}{2T} \langle \boldsymbol{H}_{T}(x_{1}, \omega) \boldsymbol{H}_{T}^{*}(x_{2}, \omega) \rangle$$

The spectral magnetic energy density is then

$$W_{H}(x,\omega) = \frac{\mu}{2}\Gamma_{H}(x,x,\omega)$$

Experimentally we obtain $\Gamma_{H}(\mathbf{r},\mathbf{r},\omega)$ using the two probe arrangement below,

Antenna measurements

Bolomey's group

Experiments with a cavity backed aperture

Consider an open mode-stirred enclosure as a source of random emissions:

C Smartt, D W P Thomas

 Do a scan over a plane in near field above the aperture of mode stirred chamber

Two probe measurement

				/\ m			
i.		副道				inter Galil	o o
<u> </u>		0	t a Ma	N.		1.0	
	A to be	1111				1205	H
				t 🕈		Call. Linit	
	D)-		19	ET.	Puga?		6

- Problem of radiation from complex sources
- Experimental measurements confirm the properties of the propagation of correlation spectrum
- Future work will look at optimising the measurement of real systems

Questions?

